File: minmax_gradient_ops.cc

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (66 lines) | stat: -rw-r--r-- 2,107 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include "caffe2/operators/minmax_ops.h"

#include <string>
#include <vector>

#include "caffe2/utils/eigen_utils.h"

namespace caffe2 {

template <typename T, class Context>
bool SelectGradientOpBase<T, Context>::RunOnDevice() {
  const auto& Y = Input(0);
  const auto& dY = Input(1);
  const int N = Y.numel();
  ConstEigenVectorArrayMap<T> Y_arr(Y.template data<T>(), N);
  ConstEigenVectorArrayMap<T> dY_arr(dY.template data<T>(), N);
  for (int i = 0; i < OutputSize(); i++) {
    const auto& Xi = Input(i + 2);
    auto* dXi = Output(i, Xi.sizes(), at::dtype<T>());
    ConstEigenVectorArrayMap<T> Xi_arr(Xi.template data<T>(), N);
    EigenVectorArrayMap<T> dXi_arr(dXi->template mutable_data<T>(), N);
    dXi_arr = (Xi_arr == Y_arr).template cast<T>() * dY_arr;
  }
  return true;
}

REGISTER_CPU_OPERATOR(MaxGradient, MaxGradientOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(MinGradient, MinGradientOp<float, CPUContext>);

OPERATOR_SCHEMA(MaxGradient).NumInputs(3, INT_MAX).NumOutputs(1, INT_MAX);
OPERATOR_SCHEMA(MinGradient).NumInputs(3, INT_MAX).NumOutputs(1, INT_MAX);

namespace {

class GetMaxGradient : public GradientMakerBase {
  using GradientMakerBase::GradientMakerBase;
  std::vector<OperatorDef> GetGradientDefs() override {
    std::vector<std::string> inputs = {O(0), GO(0)};
    std::vector<std::string> grad_inputs;
    for (int i = 0; i < def_.input_size(); ++i) {
      inputs.push_back(I(i));
      grad_inputs.push_back(GI(i));
    }
    return SingleGradientDef("MaxGradient", "", inputs, grad_inputs);
  }
};

class GetMinGradient : public GradientMakerBase {
  using GradientMakerBase::GradientMakerBase;
  vector<OperatorDef> GetGradientDefs() override {
    std::vector<std::string> inputs = {O(0), GO(0)};
    std::vector<std::string> grad_inputs;
    for (int i = 0; i < def_.input_size(); ++i) {
      inputs.push_back(I(i));
      grad_inputs.push_back(GI(i));
    }
    return SingleGradientDef("MinGradient", "", inputs, grad_inputs);
  }
};

} // namespace

REGISTER_GRADIENT(Max, GetMaxGradient);
REGISTER_GRADIENT(Min, GetMinGradient);

} // namespace caffe2