File: normalize_l1_op.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (39 lines) | stat: -rw-r--r-- 1,075 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#ifndef CAFFE2_OPERATORS_NORMALIZE_L1_OP_H_
#define CAFFE2_OPERATORS_NORMALIZE_L1_OP_H_

#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"

namespace caffe2 {

template <typename T, class Context>
class NormalizeL1Op final : public Operator<Context> {
 public:
  USE_OPERATOR_CONTEXT_FUNCTIONS;
  USE_SIMPLE_CTOR_DTOR(NormalizeL1Op)

  bool RunOnDevice() override {
    const auto& x = Input(0);

    const auto* xData = x.template data<T>();
    auto* y = Output(0, x.sizes(), at::dtype<T>());
    auto* yData = y->template mutable_data<T>();

    const auto canonical_axis = x.canonical_axis_index(
        this->template GetSingleArgument<int>("axis", -1));
    const int m = x.dim32(canonical_axis);
    const int n = x.numel() / m;
    const int sf = x.size_from_dim(canonical_axis + 1);
    DoNormalize(xData, yData, m, n, sf);
    return true;
  }

 private:
  void
  DoNormalize(const T* xData, T* yData, const int m, const int n, const int sf);
};

} // namespace caffe2

#endif // CAFFE2_OPERATORS_NORMALIZE_L1_OP_H_