1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
#include "caffe2/operators/prelu_op.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/cpu_neon.h"
namespace caffe2 {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
namespace {
void runNeonPrelu(float* out, const float* in, int size, float w) {
float32x4_t vZero = vdupq_n_f32(0.0f);
float32x4_t vW = vdupq_n_f32(w);
constexpr int kVecSizeInFloat = sizeof(float32x4_t) / sizeof(float);
if (size < kVecSizeInFloat) {
for (int i = 0; i < size; ++i) {
float v = in[i];
out[i] = v > 0 ? v : v * w;
}
return;
}
// We want to load aligned from the input, but assume the output is unaligned
int prologue = kVecSizeInFloat -
// remainder in floats
(((uintptr_t)in) % (sizeof(float32x4_t))) / sizeof(float);
int i = 0;
// Prologue loop
for (; i < prologue; ++i) {
float v = in[i];
out[i] = v > 0 ? v : v * w;
}
// The loop is manually unrolled by 6; seems to be the limit for
// armv7 to avoid register spills
constexpr int kUnroll = 6;
constexpr int kFloatsPerLoop = kUnroll * kVecSizeInFloat;
int remainder = size - prologue;
int vectorizable = prologue + (remainder / kFloatsPerLoop) * kFloatsPerLoop;
for (; i < vectorizable; i += kFloatsPerLoop) {
float32x4_t v0 = vld1q_f32_aligned(in + i + 0);
float32x4_t v1 = vld1q_f32_aligned(in + i + 4);
float32x4_t v2 = vld1q_f32_aligned(in + i + 8);
float32x4_t v3 = vld1q_f32_aligned(in + i + 12);
float32x4_t v4 = vld1q_f32_aligned(in + i + 16);
float32x4_t v5 = vld1q_f32_aligned(in + i + 20);
uint32x4_t gz0 = vcgtq_f32(v0, vZero);
uint32x4_t gz1 = vcgtq_f32(v1, vZero);
uint32x4_t gz2 = vcgtq_f32(v2, vZero);
uint32x4_t gz3 = vcgtq_f32(v3, vZero);
uint32x4_t gz4 = vcgtq_f32(v4, vZero);
uint32x4_t gz5 = vcgtq_f32(v5, vZero);
float32x4_t v0neg = vmulq_f32(v0, vW);
float32x4_t v1neg = vmulq_f32(v1, vW);
float32x4_t v2neg = vmulq_f32(v2, vW);
float32x4_t v3neg = vmulq_f32(v3, vW);
float32x4_t v4neg = vmulq_f32(v4, vW);
float32x4_t v5neg = vmulq_f32(v5, vW);
// v0 > 0 ? v0 : v0 * w
v0 = vbslq_f32(gz0, v0, v0neg);
v1 = vbslq_f32(gz1, v1, v1neg);
v2 = vbslq_f32(gz2, v2, v2neg);
v3 = vbslq_f32(gz3, v3, v3neg);
v4 = vbslq_f32(gz4, v4, v4neg);
v5 = vbslq_f32(gz5, v5, v5neg);
vst1q_f32(out + i + 0, v0);
vst1q_f32(out + i + 4, v1);
vst1q_f32(out + i + 8, v2);
vst1q_f32(out + i + 12, v3);
vst1q_f32(out + i + 16, v4);
vst1q_f32(out + i + 20, v5);
}
for (; i < size; ++i) {
float v = in[i];
out[i] = v > 0 ? v : v * w;
}
}
} // namespace
#endif // defined(__ARM_NEON__) || defined(__ARM_NEON)
template <>
bool PReluOp<float, CPUContext>::RunOnDevice() {
const auto& X = Input(0);
const auto& W = Input(1);
auto* Y = Output(0, X.sizes(), at::dtype<float>());
const auto* Xdata = X.template data<float>();
const auto* Wdata = W.template data<float>();
auto* Ydata = Y->template mutable_data<float>();
const auto C = order_ == StorageOrder::NCHW ? X.size(1) : X.size(X.dim() - 1);
const auto C_shared = (W.numel() == 1);
if (!C_shared) {
CAFFE_ENFORCE_EQ(C, W.numel());
}
if (C_shared) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
// The function is completely pointwise
runNeonPrelu(Ydata, Xdata, X.size(), Wdata[0]);
#else
ConstEigenVectorMap<float> Xvec(Xdata, X.numel());
EigenVectorMap<float> Yvec(Ydata, Y->numel());
Yvec = Xvec.cwiseMax(0.f) + Xvec.cwiseMin(0.f) * Wdata[0];
#endif // defined(__ARM_NEON__) || defined(__ARM_NEON)
return true;
}
// non-shared case.
switch (order_) {
case StorageOrder::NCHW: {
const auto N = X.size(0);
const auto dim = X.size_from_dim(2);
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
// Pointwise for each channel
for (int n = 0; n < N; ++n) {
for (int c = 0; c < C; ++c) {
runNeonPrelu(
Ydata + (n * C + c) * dim,
Xdata + (n * C + c) * dim,
dim,
Wdata[c]);
}
}
#else
int nc = 0;
for (int n = 0; n < N; ++n) {
for (int c = 0; c < C; ++c) {
ConstEigenVectorMap<float> Xvec(Xdata + nc * dim, dim);
EigenVectorMap<float>(Ydata + nc * dim, dim) =
Xvec.cwiseMax(0.f) + Xvec.cwiseMin(0.f) * Wdata[c];
nc++;
}
}
#endif
break;
}
case StorageOrder::NHWC: {
// Lay out matrix as (NHW, C) and multiply by C
const auto NHW = X.numel() / C;
ConstEigenArrayMap<float> Xmat(Xdata, C, NHW);
ConstEigenVectorArrayMap<float> Wvec(Wdata, C);
EigenArrayMap<float> Ymat(Ydata, C, NHW);
Ymat = (Xmat > 0).select(Xmat, Xmat.colwise() * Wvec);
break;
}
default:
CAFFE_THROW("Unknown storage order: ", order_);
}
return true;
}
template <>
bool PReluGradientOp<float, CPUContext>::RunOnDevice() {
auto& Y = Input(0);
auto& dY = Input(1);
auto& X = Input(2);
auto& W = Input(3);
CAFFE_ENFORCE(&Y != &X, "Cannot backpropagate through an in-place PReLU");
DCHECK_EQ(dY.numel(), Y.numel());
auto* dX = Output(0, Y.sizes(), at::dtype<float>());
auto* dW = Output(1, W.sizes(), at::dtype<float>());
const auto C = order_ == StorageOrder::NCHW ? X.size(1) : X.size(X.dim() - 1);
const auto C_shared = (W.numel() == 1);
const float* Ydata = Y.data<float>();
const float* dYdata = dY.data<float>();
const float* Xdata = X.data<float>();
const float* Wdata = W.data<float>();
float* dXdata = dX->template mutable_data<float>();
float* dWdata = dW->template mutable_data<float>();
// non-shared case.
switch (order_) {
case StorageOrder::NCHW: {
const auto dim = X.size_from_dim(2);
const auto div_factor = C_shared ? C : 1;
for (auto c = 0; c < W.numel(); ++c) {
dWdata[c] = 0;
}
for (int i = 0; i < Y.numel(); ++i) {
if (Xdata[i] <= 0) {
int c = (i / dim) % C / div_factor;
dWdata[c] += dYdata[i] * Xdata[i];
}
}
for (int i = 0; i < Y.numel(); ++i) {
if (Xdata[i] > 0) {
dXdata[i] = dYdata[i];
} else {
int c = (i / dim) % C / div_factor;
dXdata[i] = Wdata[c] * dYdata[i];
}
}
break;
}
case StorageOrder::NHWC: {
const auto NHW = X.numel() / C;
ConstEigenVectorArrayMap<float> Wvec(Wdata, W.numel());
EigenVectorArrayMap<float> dWvec(dWdata, dW->numel());
ConstEigenArrayMap<float> Ymat(Ydata, C, NHW);
ConstEigenArrayMap<float> dYmat(dYdata, C, NHW);
ConstEigenArrayMap<float> Xmat(Xdata, C, NHW);
EigenArrayMap<float> dXmat(dXdata, C, NHW);
if (C_shared) {
dXmat = (Xmat > 0).select(dYmat, dYmat * Wdata[0]);
dWdata[0] =
(Xmat > 0)
.select(
Xmat.cwiseMin(0.0f), // zero gradients on the 'if' path.
dYmat * Xmat)
.sum();
} else {
dXmat = (Xmat > 0).select(dYmat, dYmat.colwise() * Wvec);
dWvec = (Xmat > 0)
.select(
Xmat.cwiseMin(0.0f), // zero gradients on the 'if' path.
dYmat * Xmat)
.rowwise()
.sum();
}
break;
}
default:
CAFFE_THROW("Unknown storage order: ", order_);
}
return true;
}
REGISTER_CPU_OPERATOR(PRelu, PReluOp<float, CPUContext>);
REGISTER_CPU_GRADIENT_OPERATOR(
PReluGradient,
PReluGradientOp<float, CPUContext>);
// Input: X, Slope, output: Y
OPERATOR_SCHEMA(PRelu)
.NumInputs(2)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.IdenticalTypeAndShapeOfInput(0)
.SetDoc(R"DOC(
The *PRelu* op takes input data tensor $X$, an input slope tensor $slope$, and produces one output tensor $Y$ of the same shape as $X.$ The op performs the element wise *PRelu* operation, defined as
$$y=prelu(x) =\begin{cases}slope * x & x < 0\\x & otherwise\end{cases}$$
Note, is slope is size 1, the value is shared across the channels, otherwise $X$ and $slope$ must be the same shape. See [Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification](https://arxiv.org/abs/1502.01852) for more information.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/prelu_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/prelu_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"PRelu",
["X","Slope"],
["Y"],
)
workspace.FeedBlob("X", np.random.randn(3, 3).astype(np.float32))
print("X:\n", workspace.FetchBlob("X"), "\n")
workspace.FeedBlob("Slope", np.array([0.1]).astype(np.float32))
print("Slope:\n", workspace.FetchBlob("Slope"), "\n")
workspace.RunOperatorOnce(op)
print("Y:\n", workspace.FetchBlob("Y"))
```
**Result**
```
X:
[[ 0.3957382 -0.19725518 -0.26991343]
[ 1.5513182 -0.27427664 -0.14584002]
[-0.4121164 0.9292345 0.96426094]]
Slope:
[0.1]
Y:
[[ 0.3957382 -0.01972552 -0.02699134]
[ 1.5513182 -0.02742766 -0.014584 ]
[-0.04121164 0.9292345 0.96426094]]
```
</details>
)DOC")
.Input(0, "X", "Input tensor of data to be operated on.")
.Input(
1,
"Slope",
"1D input slope tensor. If `Slope` is of size 1, the value is shared across different channels")
.Output(0, "Y", "Output tensor, with same shape as $X$.")
.InheritOnnxSchema();
// Input: Y, dY, output: dX
GRADIENT_OPERATOR_SCHEMA(PReluGradient)
.NumInputs(4)
.NumOutputs(2)
.SetDoc(R"DOC(
PReluGradient takes both Y and dY and uses this to update dX and dW according
to the chain rule and derivatives of the rectified linear function.
)DOC")
.IdenticalTypeAndShapeOfMultipleInputs({2, 3});
class GetPReluGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
def_.type() + "Gradient",
"",
vector<string>{O(0), GO(0), I(0), I(1)},
vector<string>{GI(0), GI(1)});
}
};
REGISTER_GRADIENT(PRelu, GetPReluGradient);
} // namespace caffe2
|