File: int8_quantize_op.cc

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (28 lines) | stat: -rw-r--r-- 975 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include "caffe2/operators/quantized/int8_quantize_op.h"

namespace caffe2 {

REGISTER_CPU_OPERATOR(Int8Quantize, int8::Int8QuantizeOp);

OPERATOR_SCHEMA(Int8Quantize)
    .Arg("Y_scale", "Output tensor quantization scale")
    .Arg("Y_zero_point", "Output tensor quantization offset")
    .NumInputs(1, 2)
    .NumOutputs(1)
    .TensorInferenceFunction([](const OperatorDef& def,
                                const vector<TensorShape>& in) {
      vector<TensorShape> out;
      TensorShape X = in[0];
      out.emplace_back(std::move(X));
      out[0].set_data_type(TensorProto_DataType_UINT8);
      return out;
    })
    .Input(0, "X", "FP32 Tensor X.")
    .Input(
        1,
        "Qparam",
        "Optional Qparam blob that contains quant param computed on activation histogram data"
        "Will overwrite Y_scale and Y_zero_point argument if specified")
    .Output(0, "Y", "Int8 Tensor qX representing X with linear quantization.");

} // namespace caffe2