File: rsqrt_op.cu

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (60 lines) | stat: -rw-r--r-- 1,410 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include "caffe2/operators/rsqrt_op.h"

#include <algorithm>
#include <functional>

#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/math.h"

namespace caffe2 {

namespace {

template <typename T>
__global__ void
RsqrtGradientCUDAKernel(const int size, const T* dY, const T* Y, T* dX) {
  CUDA_1D_KERNEL_LOOP(i, size) {
#if __CUDA_ARCH__ >= 350
    dX[i] = __ldg(dY + i) * math::utils::Cube<T>(__ldg(Y + i)) *
        static_cast<T>(-0.5);
#else
    dX[i] = dY[i] * math::utils::Cube<T>(Y[i]) * static_cast<T>(-0.5);
#endif
  }
}

} // namespace

template <>
template <typename T>
bool RsqrtGradientFunctor<CUDAContext>::Forward(
    const std::vector<int>& dY_dims,
    const std::vector<int>& /* Y_dims */,
    const T* dY,
    const T* Y,
    T* dX,
    CUDAContext* context) const {
  const int size = std::accumulate(
      dY_dims.cbegin(), dY_dims.cend(), 1, std::multiplies<int>());
  RsqrtGradientCUDAKernel<T>
      <<<CAFFE_GET_BLOCKS(size),
         CAFFE_CUDA_NUM_THREADS,
         0,
         context->cuda_stream()>>>(size, dY, Y, dX);
  return true;
}

REGISTER_CUDA_OPERATOR(
    Rsqrt,
    UnaryElementwiseOp<
        TensorTypes<float>,
        CUDAContext,
        RsqrtFunctor<CUDAContext>>);
REGISTER_CUDA_OPERATOR(
    RsqrtGradient,
    BinaryElementwiseOp<
        TensorTypes<float>,
        CUDAContext,
        RsqrtGradientFunctor<CUDAContext>>);

} // namespace caffe2