File: scale_blobs_op.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (58 lines) | stat: -rw-r--r-- 1,458 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#ifndef CAFFE2_OPERATORS_SCALE_BLOBS_OP_H_
#define CAFFE2_OPERATORS_SCALE_BLOBS_OP_H_

#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"

namespace caffe2 {

template <class Context>
class ScaleBlobsOp final : public Operator<Context> {
 public:
  USE_OPERATOR_CONTEXT_FUNCTIONS;
  template <class... Args>
  explicit ScaleBlobsOp(Args&&... args)
      : Operator<Context>(std::forward<Args>(args)...),
        OP_SINGLE_ARG(float, "scale", scale_, 1.0f) {}

  template <typename T>
  bool DoRunWithType() {
    int batchSize = InputSize();

    for (int i = 0; i < batchSize; ++i) {
      const auto& X = Input(i);
      auto* Y = Output(i, X.sizes(), at::dtype<T>());
      math::Scale<float, T, Context>(
          X.numel(),
          scale_,
          X.template data<T>(),
          Y->template mutable_data<T>(),
          &context_);
    }
    return true;
  }

  bool RunOnDevice() override {
    for (int i = 0; i < InputSize(); ++i) {
      auto& input = this->template Input<Tensor>(i, CPU);
      auto* output = this->template Output<Tensor>(i, CPU);
      output->ResizeLike(input);
    }
    return DispatchHelper<TensorTypes<float>>::call(this, Input(0));
  }

 private:
  const float scale_;
  Tensor blobSizes_;
  Tensor inputs_;
  Tensor outputs_;

  Tensor hostBlobSizes_;
  Tensor hostInputs_;
  Tensor hostOutputs_;
};

} // namespace caffe2

#endif // CAFFE2_OPERATORS_SCALE_BLOBS_OP_H_