File: sparse_normalize_op.cc

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (77 lines) | stat: -rw-r--r-- 2,524 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#include "caffe2/operators/sparse_normalize_op.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/eigen_utils.h"

namespace caffe2 {

template <>
bool SparseNormalizeOp<float, CPUContext>::RunOnDevice() {
  return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
      this, Input(INDICES));
}

template <>
template <typename SIndex>
bool SparseNormalizeOp<float, CPUContext>::DoRunWithType() {
  const auto* indices = Input(INDICES).template data<SIndex>();
  const auto* paramIn = Input(PARAM).template data<float>();
  auto* paramOut = Output(OUTPUT_PARAM)->template mutable_data<float>();
  const float kEps = 1e-12f;

  // n: number of sparse embeddings to be normalized
  auto n = Input(INDICES).numel();
  if (n == 0) {
    return true;
  }

  // embedding length, e.g. 32, 64, 128
  auto block_size = Input(PARAM).size_from_dim(1);
  for (int i = 0; i < n; ++i) {
    auto idx = indices[i];
    auto offsetIdx = idx * block_size;
    ConstEigenVectorMap<float> xVec(paramIn + offsetIdx, block_size);
    auto norm = xVec.template lpNorm<2>();

    if (use_max_norm_ && norm <= norm_) {
      continue;
    }

    math::Scale(
        block_size,
        norm_ / (norm + kEps),
        paramOut + offsetIdx,
        paramOut + offsetIdx,
        &context_);
  }
  return true;
}

REGISTER_CPU_OPERATOR(SparseNormalize, SparseNormalizeOp<float, CPUContext>);
OPERATOR_SCHEMA(SparseNormalize)
    .NumInputs(2, 3)
    .NumOutputs(1)
    .Input(0, "param", "Parameters to be normalized")
    .Input(1, "indices", "Sparse indices")
    .Input(
        2,
        "grad",
        "Gradient computed (optional - not used, this argument is for backwards compatibility)")
    .Output(0, "output_param", "Normalized parameters")
    .EnforceOneToOneInplace()
    .Arg(
        "use_max_norm",
        "A bool variable to control whether to use max norm \
    or constant norm. When use_max_norm = false, constant norm is used so that \
    all the embedding vectors are scaled to have a L2 norm equals to A \
    (see blow argument norm=A). If use_max_norm = true, \
    max norm is used so that embedding is scaled so that its l2 norm is no larger \
    than A. If an embedding's norm is less than A originally, \
    the embedding is left unchanged.\
    The default is True.")
    .Arg("norm", "L2 norm of the embedding. The default is 1.0.")
    .SetDoc(R"DOC(
Given a sparse matrix, apply max_norm or constant_norm sparse regularization.
)DOC");

SHOULD_NOT_DO_GRADIENT(SparseNormalize);
} // namespace caffe2