1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
#include "caffe2/opt/custom/in_batch_broadcast.h"
#include "caffe2/utils/proto_utils.h"
namespace caffe2 {
namespace opt {
const std::string kTILE_SUFFIX = "_tile";
void inBatchBroadcast(
NetDef* net,
const std::unordered_set<std::string>& to_broadcast_blobs,
int32_t batch_size,
ShapeInfoMap& shape_hints) {
int current_pos = net->op_size();
caffe2::NetDef broadcast_net;
broadcast_net.CopyFrom(*net);
broadcast_net.clear_op();
std::vector<OperatorDef> pre_ops;
std::vector<OperatorDef> post_ops;
// Heuristic: if any of to_broadcast_blobs is connected to
// Fused8BitRowwiseQuantizedToFloat only, we move Tile after
// Fused8BitRowwiseQuantizedToFloat to save some compute.
std::unordered_map<std::string, int> consumers;
for (const auto& op : net->op()) {
for (const auto& i : op.input()) {
if (to_broadcast_blobs.count(i)) {
consumers[i] += 1;
}
}
}
std::unordered_map<std::string, std::string> to_broadcast_replace;
for (const auto& op : net->op()) {
bool match = false;
if (op.type() == "Fused8BitRowwiseQuantizedToFloat") {
CAFFE_ENFORCE_EQ(
op.input_size(),
1,
"Fused8BitRowwiseQuantizedToFloat can only have 1 input");
CAFFE_ENFORCE_EQ(
op.output_size(),
1,
"Fused8BitRowwiseQuantizedToFloat can only have 1 output");
const auto it = consumers.find(op.input(0));
if (it != consumers.end() && it->second == 1) {
match = true;
}
}
if (match) {
to_broadcast_replace.emplace(op.input(0), op.output(0));
pre_ops.emplace_back(op);
} else {
post_ops.emplace_back(op);
}
}
// Build a reverse mapping. Not that such mapping is bijective, because if it
// is not, some key will have multiple consumers, which violates the single
// consumer condition above.
std::unordered_map<std::string, std::string> reversed;
for (const auto& kv : to_broadcast_replace) {
reversed.emplace(kv.second, kv.first);
}
std::unordered_set<std::string> to_broadcast_copy;
for (const auto& b : to_broadcast_blobs) {
const auto it = to_broadcast_replace.find(b);
if (it != to_broadcast_replace.end()) {
to_broadcast_copy.emplace(it->second);
} else {
to_broadcast_copy.emplace(b);
}
}
for (const auto& op : pre_ops) {
broadcast_net.add_op()->CopyFrom(op);
}
auto setShape = [&shape_hints, batch_size](
const std::string& blob,
const std::string& new_blob) mutable {
auto it = shape_hints.find(blob);
CAFFE_ENFORCE(it != shape_hints.end(), "Cannot find shape info for ", blob);
auto& shape = it->second;
CAFFE_ENFORCE(shape.shape.dims_size(), "Dim size for ", blob, " is 0");
if (!new_blob.empty()) {
shape_hints.emplace(new_blob, shape);
}
CAFFE_ENFORCE_EQ(
shape.shape.dims(0) % batch_size,
0,
"Dims(0) for ",
blob,
": ",
shape.shape.dims(0),
" cannot be divided by batch_size ");
shape.shape.set_dims(0, shape.shape.dims(0) / batch_size);
shape.setDimType(0, TensorBoundShape_DimType_CONSTANT);
};
for (const auto& blob : to_broadcast_copy) {
auto new_blob = blob + kTILE_SUFFIX;
auto* op = broadcast_net.add_op();
op->CopyFrom(CreateOperatorDef(
"Tile",
"",
{blob},
{new_blob},
{MakeArgument<int>("tiles", batch_size),
MakeArgument<int>("axis", 0),
// Indicating that we are tiling to max_batch_size
MakeArgument<int>("dynamic", 1),
MakeArgument<int>("net_pos", current_pos++)}));
setShape(blob, new_blob);
const auto rit = reversed.find(blob);
if (rit != reversed.end()) {
const auto& orignal_input = rit->second;
setShape(orignal_input, "");
}
}
for (auto& op : post_ops) {
for (int j = 0; j < op.input_size(); j++) {
if (to_broadcast_copy.count(op.input(j))) {
*op.mutable_input(j) = op.input(j) + kTILE_SUFFIX;
}
}
broadcast_net.add_op()->CopyFrom(op);
}
net->Swap(&broadcast_net);
}
} // namespace opt
} // namespace caffe2
|