1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
#include <gtest/gtest.h>
#include "caffe2/opt/converter.h"
#include "caffe2/opt/distributed.h"
caffe2::NetDef fakeNet() {
caffe2::NetDef net;
{
caffe2::OperatorDef* def = net.add_op();
def->set_type("Fake");
def->add_input("X");
def->add_output("Y");
}
{
caffe2::OperatorDef* def = net.add_op();
def->set_type("Fake");
def->add_input("Y");
def->add_output("Z");
}
{
caffe2::OperatorDef* def = net.add_op();
def->set_type("Fake");
def->add_input("Z");
def->add_input("X");
def->add_output("W");
}
net.add_external_input("X");
net.add_external_output("Y");
net.add_external_output("W");
return net;
}
// Common usage
using namespace nom::repr;
TEST(Converter, DeclareExport) {
auto net = fakeNet();
caffe2::injectDataEdgeIndicators(&net);
auto nn = caffe2::convertToNNModule(net);
// This is in nom::repr
auto inputs = nn::filter<Declare>(nn);
auto outputs = nn::filter<Export>(nn);
auto count = 0;
for (const auto& declareNode : inputs) {
count++;
// This call fails an assertion if it isn't true
auto delcare_op = nn::get<Declare>(declareNode);
// String version of name can be extracted like this
EXPECT_EQ(delcare_op->getName(), "Declare");
// What used to be external_input (note that getOutputs returns a vector)
auto inputNode = nn::getOutputs(declareNode).at(0);
// Key idea is that we are working with nodes that hold things,
// so nn::get<T> is very commonly used
auto input = nn::get<Tensor>(inputNode);
// We only had one external input in the original net,
// so this should be true
EXPECT_EQ(input->getName(), "X");
}
// Only 1 external input
EXPECT_EQ(count, 1);
// Reset for external output
count = 0;
for (const auto& exportNode : outputs) {
count++;
}
// 2 external outputs
EXPECT_EQ(count, 2);
}
TEST(Distributed, InsertDeviceOptions) {
auto net = fakeNet();
caffe2::injectDataEdgeIndicators(&net);
auto nn = caffe2::convertToNNModule(net);
caffe2::DeviceOption d;
d.set_device_type(1337);
caffe2::addBlobDeviceOptions({{"X", d}, {"Y", d}, {"W", d}}, &nn);
for (auto& ns : {nn::filter<Declare>(nn), nn::filter<Export>(nn)}) {
for (auto& node : ns) {
auto op = nn::get<NeuralNetOperator>(node);
auto annot = dyn_cast<caffe2::Caffe2Annotation>(op->getAnnotation());
auto d = annot->getDeviceOption();
EXPECT_EQ(d.device_type(), 1337);
}
}
}
TEST(Distributed, InsertDeviceOptionsFailureCase) {
auto net = fakeNet();
caffe2::injectDataEdgeIndicators(&net);
auto nn = caffe2::convertToNNModule(net);
caffe2::DeviceOption d;
d.set_device_type(1337);
// We can only use correct blob names, expect failure otherwise
EXPECT_THROW(
{
caffe2::addBlobDeviceOptions(
{{"X", d}, {"Y", d}, {"W", d}, {"FAKE", d}}, &nn);
},
std::exception);
}
TEST(Converter, InjectDataEdgeIndicators) {
auto net = fakeNet();
auto nn = caffe2::convertToNNModule(net);
caffe2::injectDataEdgeIndicators(&nn);
auto new_net = caffe2::convertToCaffe2Proto(nn);
EXPECT_EQ(new_net.op_size(), 3 + 1 + 2); // Inserted 1 Declare and 2 Export
auto declare_count = 0;
auto export_count = 0;
for (const auto& op : new_net.op()) {
declare_count += op.type() == "Declare";
export_count += op.type() == "Export";
}
EXPECT_EQ(declare_count, 1);
EXPECT_EQ(export_count, 2);
// Remove them from the network
EXPECT_EQ(new_net.external_input_size(), 0);
EXPECT_EQ(new_net.external_output_size(), 0);
auto new_nn = caffe2::convertToNNModule(new_net);
caffe2::removeDataEdgeIndicators(&new_nn);
new_net = caffe2::convertToCaffe2Proto(new_nn);
for (const auto& op : new_net.op()) {
EXPECT_NE(op.type(), "Declare");
EXPECT_NE(op.type(), "Export");
}
EXPECT_EQ(new_net.external_input_size(), 1);
EXPECT_EQ(new_net.external_output_size(), 2);
}
// Main usage
TEST(Converter, OverloadedConvertToNNModule) {
auto net = fakeNet();
caffe2::DeviceOption d;
d.set_device_type(1337);
auto nn = caffe2::convertToNNModule(net, {{"X", d}, {"Y", d}, {"W", d}});
for (auto& ns : {nn::filter<Declare>(nn), nn::filter<Export>(nn)}) {
for (auto& node : ns) {
auto op = nn::get<NeuralNetOperator>(node);
auto annot = dyn_cast<caffe2::Caffe2Annotation>(op->getAnnotation());
auto d = annot->getDeviceOption();
EXPECT_EQ(d.device_type(), 1337);
}
}
}
TEST(Converter, OverloadedConvertToNNModuleFailure) {
auto net = fakeNet();
caffe2::DeviceOption d;
d.set_device_type(1337);
// We can only use correct blob names, expect failure otherwise
EXPECT_THROW(
{
auto nn = caffe2::convertToNNModule(
net, {{"X", d}, {"Y", d}, {"W", d}, {"FAKE", d}});
},
std::exception);
}
|