File: allcompare_test.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (87 lines) | stat: -rw-r--r-- 2,250 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/python






from hypothesis import given, settings
import hypothesis.strategies as st
from multiprocessing import Process

import numpy as np
import tempfile
import shutil

import caffe2.python.hypothesis_test_util as hu

op_engine = 'GLOO'


class TemporaryDirectory:
    def __enter__(self):
        self.tmpdir = tempfile.mkdtemp()
        return self.tmpdir

    def __exit__(self, type, value, traceback):
        shutil.rmtree(self.tmpdir)


def allcompare_process(filestore_dir, process_id, data, num_procs):
    from caffe2.python import core, data_parallel_model, workspace, dyndep
    from caffe2.python.model_helper import ModelHelper
    from caffe2.proto import caffe2_pb2
    dyndep.InitOpsLibrary("@/caffe2/caffe2/distributed:file_store_handler_ops")

    workspace.RunOperatorOnce(
        core.CreateOperator(
            "FileStoreHandlerCreate", [], ["store_handler"], path=filestore_dir
        )
    )
    rendezvous = dict(
        kv_handler="store_handler",
        shard_id=process_id,
        num_shards=num_procs,
        engine=op_engine,
        exit_nets=None
    )

    model = ModelHelper()
    model._rendezvous = rendezvous

    workspace.FeedBlob("test_data", data)

    data_parallel_model._RunComparison(
        model, "test_data", core.DeviceOption(caffe2_pb2.CPU, 0)
    )


class TestAllCompare(hu.HypothesisTestCase):
    @given(
        d=st.integers(1, 5), n=st.integers(2, 11), num_procs=st.integers(1, 8)
    )
    @settings(deadline=10000)
    def test_allcompare(self, d, n, num_procs):
        dims = []
        for _ in range(d):
            dims.append(np.random.randint(1, high=n))
        test_data = np.random.ranf(size=tuple(dims)).astype(np.float32)

        with TemporaryDirectory() as tempdir:
            processes = []
            for idx in range(num_procs):
                process = Process(
                    target=allcompare_process,
                    args=(tempdir, idx, test_data, num_procs)
                )
                processes.append(process)
                process.start()

            while len(processes) > 0:
                process = processes.pop()
                process.join()


if __name__ == "__main__":
    import unittest
    unittest.main()