File: shape_op_test.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (90 lines) | stat: -rw-r--r-- 2,667 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90





import unittest
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu


@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
class ShapeTest(hu.HypothesisTestCase):
    @given(n=st.integers(1, 128),
           c=st.integers(1, 128),
           h=st.integers(1, 128),
           w=st.integers(1, 128),
           **mu.gcs)
    @settings(max_examples=10, deadline=None)
    def test_shape(self, n, c, h, w, gc, dc):
        op0 = core.CreateOperator(
            "Shape",
            ["X0"],
            ["Y0"],
            device_option=dc[0]
        )
        op1 = core.CreateOperator(
            "Shape",
            ["X1"],
            ["Y1"],
            device_option=dc[1]
        )
        X = np.random.rand(n, c, h, w).astype(np.float32) - 0.5
        workspace.FeedBlob('X0', X, dc[0])
        workspace.FeedBlob('X1', X, dc[1])
        workspace.RunOperatorOnce(op0)
        workspace.RunOperatorOnce(op1)
        Y0 = workspace.FetchBlob('Y0')
        Y1 = workspace.FetchBlob('Y1')

        if not np.allclose(Y0, Y1, atol=0, rtol=0):
            print(Y1.flatten())
            print(Y0.flatten())
            print(np.max(np.abs(Y1 - Y0)))
            self.assertTrue(False)

    @given(n=st.integers(1, 128),
           c=st.integers(1, 128),
           h=st.integers(1, 128),
           w=st.integers(1, 128),
           axes=st.lists(st.integers(0, 3), min_size=1, max_size=3),
           **mu.gcs)
    @settings(max_examples=10, deadline=None)
    def test_shape_with_axes(self, n, c, h, w, axes, gc, dc):
        axes = list(set(axes)).sort()
        op0 = core.CreateOperator(
            "Shape",
            ["X0"],
            ["Y0"],
            axes = axes,
            device_option=dc[0]
        )
        op1 = core.CreateOperator(
            "Shape",
            ["X1"],
            ["Y1"],
            axes = axes,
            device_option=dc[1]
        )
        X = np.random.rand(n, c, h, w).astype(np.float32) - 0.5
        workspace.FeedBlob('X0', X, dc[0])
        workspace.FeedBlob('X1', X, dc[1])
        workspace.RunOperatorOnce(op0)
        workspace.RunOperatorOnce(op1)
        Y0 = workspace.FetchBlob('Y0')
        Y1 = workspace.FetchBlob('Y1')

        if not np.allclose(Y0, Y1, atol=0, rtol=0):
            print(Y1.flatten())
            print(Y0.flatten())
            print(np.max(np.abs(Y1 - Y0)))
            self.assertTrue(False)


if __name__ == "__main__":
    unittest.main()