File: mkl_test_util.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (44 lines) | stat: -rw-r--r-- 1,142 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
## @package mkl_test_util
# Module caffe2.python.mkl_test_util
"""
The MKL test utils is a small addition on top of the hypothesis test utils
under caffe2/python, which allows one to more easily test MKL related
operators.
"""






import hypothesis.strategies as st

from caffe2.proto import caffe2_pb2
from caffe2.python import workspace
from caffe2.python import hypothesis_test_util as hu

cpu_do = hu.cpu_do
gpu_do = hu.gpu_do
mkl_do = caffe2_pb2.DeviceOption(device_type=caffe2_pb2.MKLDNN)
device_options = hu.device_options + (
    [mkl_do] if workspace.C.has_mkldnn else [])


def device_checker_device_options():
    return st.just(device_options)


def gradient_checker_device_option():
    return st.sampled_from(device_options)


gcs = dict(
    gc=gradient_checker_device_option(),
    dc=device_checker_device_options()
)

gcs_cpu_only = dict(gc=st.sampled_from([cpu_do]), dc=st.just([cpu_do]))
gcs_gpu_only = dict(gc=st.sampled_from([gpu_do]), dc=st.just([gpu_do]))
gcs_mkl_only = dict(gc=st.sampled_from([mkl_do]), dc=st.just([mkl_do]))

gcs_cpu_mkl = dict(gc=st.sampled_from([cpu_do, mkl_do]), dc=st.just([cpu_do, mkl_do]))