File: backend_cpp_rep.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (52 lines) | stat: -rw-r--r-- 1,863 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
## @package onnx
# Module caffe2.python.onnx.backend_rep_cpp






from onnx.backend.base import BackendRep, namedtupledict

# This is a wrapper around C++ Caffe2BackendRep,
# mainly to handle the different input and output types for convenience of Python
class Caffe2CppRep(BackendRep):
    def __init__(self, cpp_rep):
        super(Caffe2CppRep, self).__init__()
        self.__core = cpp_rep
        self.__external_outputs = cpp_rep.external_outputs()
        self.__external_inputs = cpp_rep.external_inputs()
        self.__uninitialized_inputs = cpp_rep.uninitialized_inputs()

    def init_net(self):
        return self.__core.init_net()

    def pred_net(self):
        return self.__core.pred_net()

    def external_outputs(self):
        return self.__core.external_outputs()

    def external_inputs(self):
        return self.__core.external_inputs()

    def run(self, inputs):
        output_values = None
        if isinstance(inputs, dict):
            output_values = self.__core.run(inputs)
        elif isinstance(inputs, list) or isinstance(inputs, tuple):
            if len(inputs) != len(self.__uninitialized_inputs):
                raise RuntimeError('Expected {} values for uninitialized '
                                   'graph inputs ({}), but got {}.'.format(
                                        len(self.__uninitialized_inputs),
                                        ', '.join(self.__uninitialized_inputs),
                                        len(inputs)))
            input_map = {}
            for k, v in zip(self.__uninitialized_inputs, inputs):
                input_map[k] = v
            output_values = self.__core.run(input_map)
        else:
            # single input
            output_values = self.__core.run([inputs])
        return namedtupledict('Outputs', self.__external_outputs)(*output_values)