File: transformations.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (58 lines) | stat: -rw-r--r-- 1,832 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################






import caffe2.python._import_c_extension as C


class Transformer(object):
    def __init__(self):
        pass

    @classmethod
    def runTransform(cls, transform_name, net):
        pb = net.Proto().SerializeToString()
        if C.transform_exists(transform_name):
            output = C.run_transform(transform_name, pb)
        elif C.workspace_transform_exists(transform_name):
            output = C.run_workspace_transform(transform_name, pb)
        else:
            raise AttributeError('Transformation {} not found.'.format(transform_name))
        net.Proto().ParseFromString(output)

    def __getattr__(self, transform_name):
        return lambda net : self.runTransform(transform_name, net)


def fuseNNPACKConvRelu(net):
    net.Proto().ParseFromString(
        C.transform_fuseNNPACKConvRelu(net.Proto().SerializeToString())
    )


def optimizeForMKLDNN(net, training_mode = False):
    net.Proto().ParseFromString(
        C.transform_optimizeForMKLDNN(net.Proto().SerializeToString(), training_mode)
    )


def fuseConvBN(net):
    net.Proto().ParseFromString(
        C.transform_fuseConvBN(net.Proto().SerializeToString())
    )