File: tt_core_test.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (82 lines) | stat: -rw-r--r-- 2,518 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82





import numpy as np
import unittest

from caffe2.python import core, workspace, tt_core
import caffe2.python.hypothesis_test_util as hu


class TestTTSVD(hu.HypothesisTestCase):
    def test_full_tt_svd(self):
        size = 256
        np.random.seed(1234)
        X = np.expand_dims(
            np.random.rand(size).astype(np.float32), axis=0)
        W = np.random.rand(size, size).astype(np.float32)
        b = np.zeros(size).astype(np.float32)
        inp_sizes = [4, 4, 4, 4]
        out_sizes = [4, 4, 4, 4]

        op_fc = core.CreateOperator(
            "FC",
            ["X", "W", "b"],
            ["Y"],
        )
        workspace.FeedBlob("X", X)
        workspace.FeedBlob("W", W)
        workspace.FeedBlob("b", b)
        workspace.RunOperatorOnce(op_fc)
        Y_fc = workspace.FetchBlob("Y").flatten()

        # Testing TT-decomposition with high ranks
        full_tt_ranks = [1, 16, 256, 16, 1]
        full_cores = tt_core.matrix_to_tt(W, inp_sizes, out_sizes,
                                          full_tt_ranks)

        full_op_tt = core.CreateOperator(
            "TT",
            ["X", "b", "cores"],
            ["Y"],
            inp_sizes=inp_sizes,
            out_sizes=out_sizes,
            tt_ranks=full_tt_ranks,
        )
        workspace.FeedBlob("X", X)
        workspace.FeedBlob("b", b)
        workspace.FeedBlob("cores", full_cores)
        workspace.RunOperatorOnce(full_op_tt)
        Y_full_tt = workspace.FetchBlob("Y").flatten()

        assert(len(Y_fc) == len(Y_full_tt))
        self.assertAlmostEquals(np.linalg.norm(Y_fc - Y_full_tt), 0, delta=1e-3)

        # Testing TT-decomposition with minimal ranks
        sparse_tt_ranks = [1, 1, 1, 1, 1]
        sparse_cores = tt_core.matrix_to_tt(W, inp_sizes, out_sizes,
                                            sparse_tt_ranks)

        sparse_op_tt = core.CreateOperator(
            "TT",
            ["X", "b", "cores"],
            ["Y"],
            inp_sizes=inp_sizes,
            out_sizes=out_sizes,
            tt_ranks=sparse_tt_ranks,
        )
        workspace.FeedBlob("X", X)
        workspace.FeedBlob("b", b)
        workspace.FeedBlob("cores", sparse_cores)
        workspace.RunOperatorOnce(sparse_op_tt)
        Y_sparse_tt = workspace.FetchBlob("Y").flatten()

        assert(len(Y_fc) == len(Y_sparse_tt))
        self.assertAlmostEquals(np.linalg.norm(Y_fc - Y_sparse_tt),
                                39.974, delta=1e-3)


if __name__ == '__main__':
    unittest.main()