File: dequantize_dnnlowp_op_test.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (53 lines) | stat: -rw-r--r-- 1,743 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


import collections

import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
from caffe2.python import core, dyndep, workspace
from caffe2.quantization.server.dnnlowp_test_utils import check_quantized_results_close
from hypothesis import given


dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])


class DNNLowPDequantizeOpTest(hu.HypothesisTestCase):
    @given(size=st.integers(1024, 2048), is_empty=st.booleans(), **hu.gcs_cpu_only)
    def test_dnnlowp_dequantize(self, size, is_empty, gc, dc):
        if is_empty:
            size = 0
        min_ = -10.0
        max_ = 20.0
        X = (np.random.rand(size) * (max_ - min_) + min_).astype(np.float32)

        Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
        outputs = []

        op_type_list = ["Dequantize", "Int8Dequantize"]
        engine = "DNNLOWP"

        outputs.append(Output(X, op_type="", engine=""))

        for op_type in op_type_list:
            net = core.Net("test_net")

            quantize = core.CreateOperator(
                "Quantize", ["X"], ["X_q"], engine=engine, device_option=gc
            )
            net.Proto().op.extend([quantize])

            dequantize = core.CreateOperator(
                op_type, ["X_q"], ["Y"], engine=engine, device_option=gc
            )
            net.Proto().op.extend([dequantize])

            self.ws.create_blob("X").feed(X, device_option=gc)
            self.ws.run(net)
            outputs.append(
                Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
            )

        check_quantized_results_close(outputs)