File: quantization_error_minimization.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (57 lines) | stat: -rw-r--r-- 1,329 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#pragma once

#include "dnnlowp.h"

namespace dnnlowp {

class QuantizationErrorMinimization {
 public:
  virtual TensorQuantizationParams ChooseQuantizationParams(
      const Histogram& hist,
      bool preserve_sparsity = false,
      int precision = 8) = 0;
  virtual ~QuantizationErrorMinimization(){};
};

class NormMinimization : public QuantizationErrorMinimization {
 public:
  enum Kind {
    L1,
    L2,
  };

  NormMinimization(Kind kind) : kind_(kind) {}

  /**
   * Faster approximate search
   */
  TensorQuantizationParams NonlinearQuantizationParamsSearch(
      const Histogram& hist,
      bool preserve_sparsity = false,
      int precision = 8);

  TensorQuantizationParams ChooseQuantizationParams(
      const Histogram& hist,
      bool preserve_sparsity = false,
      int precision = 8) override;

 protected:
  Kind kind_;
};

class L1ErrorMinimization : public NormMinimization {
 public:
  L1ErrorMinimization() : NormMinimization(L1) {}
};

class P99 : public QuantizationErrorMinimization {
 public:
  float threshold_;
  P99(float p99_threshold = 0.99) : threshold_(p99_threshold) {}
  TensorQuantizationParams ChooseQuantizationParams(
      const Histogram& hist,
      bool preserve_sparsity = true,
      int precision = 8) override;
}; // class P99QuantizationFactory

} // namespace dnnlowp