File: utility_dnnlowp_ops.cc

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (79 lines) | stat: -rw-r--r-- 2,298 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include "utility_dnnlowp_ops.h"

namespace caffe2 {

template <typename T>
GatherDNNLowPOp<T>::GatherDNNLowPOp(
    const OperatorDef& operator_def,
    Workspace* ws)
    : GatherOp<CPUContext>(operator_def, ws),
      qfactory_(dnnlowp::GetQuantizationFactoryOf(this)) {}

template <typename T>
GatherDNNLowPOp<T>::~GatherDNNLowPOp() {
  if (measure_quantization_error_) {
    dnnlowp::ReportQuantizationError(this, quantization_error_stats_);
  }
}

template <typename T>
bool GatherDNNLowPOp<T>::RunOnDevice() {
  using namespace dnnlowp;

  if (!arguments_parsed_) {
    dnnlowp::ParseDNNLowPOperatorArguments(
        this, &dequantize_output_, &measure_quantization_error_);
    arguments_parsed_ = true;
  }

  if (!InputIsType<int8::Int8TensorCPU>(DATA)) {
    if (dequantize_output_) {
      return GatherOp<CPUContext>::RunOnDevice();
    } else {
      // If input or output is float, delegate to fp32 op
      Fp32Op_()->DequantizeInput();
      // dequantize input if it's not already float
      if (!Fp32Op_()->Get()->RunOnDevice()) {
        return false;
      }

      int8::Int8TensorCPU* output =
          Outputs()[0]->template GetMutable<int8::Int8TensorCPU>();

      output->t.ResizeLike(*Fp32Op_()->Get()->Output(0));
      T* out_data = output->t.template mutable_data<T>();

      TensorQuantizationParams out_qparams;
      if (HasStaticQuantization(this)) {
        out_qparams = GetStaticQuantizationParamsOf(this, 0);
      } else {
        out_qparams = Fp32Op_()->GetOutputQuantizationParams(qfactory_.get());
      }

      fbgemm::Quantize<T>(
          static_cast<const float*>(Fp32Op_()->Get()->Output(0)->raw_data()),
          out_data,
          output->t.numel(),
          out_qparams);

      PropagateOutputTensorQuantizationParams(this, 0, out_qparams);
    }
  } else {
    DispatchHelper<TensorTypes<int32_t, int64_t>>::call(this, Input(INDICES));

    TensorQuantizationParams in_qparams =
        GetInputTensorQuantizationParamsOf(this, 0, qfactory_.get());

    PropagateOutputTensorQuantizationParams(this, 0, in_qparams);
  }

  return true;
}

REGISTER_CPU_OPERATOR_WITH_ENGINE(Gather, DNNLOWP, GatherDNNLowPOp<uint8_t>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
    Int8Gather,
    DNNLOWP,
    GatherDNNLowPOp<uint8_t>);

} // namespace caffe2