1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
.. role:: hidden
:class: hidden-section
torch.nn
===================================
These are the basic building block for graphs
.. contents:: torch.nn
:depth: 2
:local:
:backlinks: top
.. currentmodule:: torch.nn
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
~parameter.Parameter
Containers
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
Module
Sequential
ModuleList
ModuleDict
ParameterList
ParameterDict
.. currentmodule:: torch
Convolution Layers
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Conv1d
nn.Conv2d
nn.Conv3d
nn.ConvTranspose1d
nn.ConvTranspose2d
nn.ConvTranspose3d
nn.Unfold
nn.Fold
Pooling layers
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.MaxPool1d
nn.MaxPool2d
nn.MaxPool3d
nn.MaxUnpool1d
nn.MaxUnpool2d
nn.MaxUnpool3d
nn.AvgPool1d
nn.AvgPool2d
nn.AvgPool3d
nn.FractionalMaxPool2d
nn.LPPool1d
nn.LPPool2d
nn.AdaptiveMaxPool1d
nn.AdaptiveMaxPool2d
nn.AdaptiveMaxPool3d
nn.AdaptiveAvgPool1d
nn.AdaptiveAvgPool2d
nn.AdaptiveAvgPool3d
Padding Layers
--------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.ReflectionPad1d
nn.ReflectionPad2d
nn.ReplicationPad1d
nn.ReplicationPad2d
nn.ReplicationPad3d
nn.ZeroPad2d
nn.ConstantPad1d
nn.ConstantPad2d
nn.ConstantPad3d
Non-linear Activations (weighted sum, nonlinearity)
---------------------------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.ELU
nn.Hardshrink
nn.Hardsigmoid
nn.Hardtanh
nn.Hardswish
nn.LeakyReLU
nn.LogSigmoid
nn.MultiheadAttention
nn.PReLU
nn.ReLU
nn.ReLU6
nn.RReLU
nn.SELU
nn.CELU
nn.GELU
nn.Sigmoid
nn.SiLU
nn.Softplus
nn.Softshrink
nn.Softsign
nn.Tanh
nn.Tanhshrink
nn.Threshold
Non-linear Activations (other)
------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Softmin
nn.Softmax
nn.Softmax2d
nn.LogSoftmax
nn.AdaptiveLogSoftmaxWithLoss
Normalization Layers
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.BatchNorm1d
nn.BatchNorm2d
nn.BatchNorm3d
nn.GroupNorm
nn.SyncBatchNorm
nn.InstanceNorm1d
nn.InstanceNorm2d
nn.InstanceNorm3d
nn.LayerNorm
nn.LocalResponseNorm
Recurrent Layers
----------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.RNNBase
nn.RNN
nn.LSTM
nn.GRU
nn.RNNCell
nn.LSTMCell
nn.GRUCell
Transformer Layers
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Transformer
nn.TransformerEncoder
nn.TransformerDecoder
nn.TransformerEncoderLayer
nn.TransformerDecoderLayer
Linear Layers
----------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Identity
nn.Linear
nn.Bilinear
Dropout Layers
--------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Dropout
nn.Dropout2d
nn.Dropout3d
nn.AlphaDropout
Sparse Layers
-------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.Embedding
nn.EmbeddingBag
Distance Functions
------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.CosineSimilarity
nn.PairwiseDistance
Loss Functions
--------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.L1Loss
nn.MSELoss
nn.CrossEntropyLoss
nn.CTCLoss
nn.NLLLoss
nn.PoissonNLLLoss
nn.KLDivLoss
nn.BCELoss
nn.BCEWithLogitsLoss
nn.MarginRankingLoss
nn.HingeEmbeddingLoss
nn.MultiLabelMarginLoss
nn.SmoothL1Loss
nn.SoftMarginLoss
nn.MultiLabelSoftMarginLoss
nn.CosineEmbeddingLoss
nn.MultiMarginLoss
nn.TripletMarginLoss
nn.TripletMarginWithDistanceLoss
Vision Layers
----------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.PixelShuffle
nn.Upsample
nn.UpsamplingNearest2d
nn.UpsamplingBilinear2d
DataParallel Layers (multi-GPU, distributed)
--------------------------------------------
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
nn.DataParallel
nn.parallel.DistributedDataParallel
Utilities
---------
From the ``torch.nn.utils`` module
.. currentmodule:: torch.nn.utils
.. autosummary::
:toctree: generated
:nosignatures:
clip_grad_norm_
clip_grad_value_
parameters_to_vector
vector_to_parameters
.. autosummary::
:toctree: generated
:nosignatures:
:template: classtemplate.rst
prune.BasePruningMethod
.. autosummary::
:toctree: generated
:nosignatures:
prune.PruningContainer
prune.Identity
prune.RandomUnstructured
prune.L1Unstructured
prune.RandomStructured
prune.LnStructured
prune.CustomFromMask
prune.identity
prune.random_unstructured
prune.l1_unstructured
prune.random_structured
prune.ln_structured
prune.global_unstructured
prune.custom_from_mask
prune.remove
prune.is_pruned
weight_norm
remove_weight_norm
spectral_norm
remove_spectral_norm
Utility functions in other modules
.. currentmodule:: torch
.. autosummary::
:toctree: generated
:nosignatures:
nn.utils.rnn.PackedSequence
nn.utils.rnn.pack_padded_sequence
nn.utils.rnn.pad_packed_sequence
nn.utils.rnn.pad_sequence
nn.utils.rnn.pack_sequence
nn.Flatten
nn.Unflatten
Quantized Functions
--------------------
Quantization refers to techniques for performing computations and storing tensors at lower bitwidths than
floating point precision. PyTorch supports both per tensor and per channel asymmetric linear quantization. To learn more how to use quantized functions in PyTorch, please refer to the :ref:`quantization-doc` documentation.
|