1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
|
torch.onnx
============
.. contents:: :local:
.. automodule:: torch.onnx
Example: End-to-end AlexNet from PyTorch to ONNX
------------------------------------------------
Here is a simple script which exports a pretrained AlexNet as defined in
torchvision into ONNX. It runs a single round of inference and then
saves the resulting traced model to ``alexnet.onnx``::
import torch
import torchvision
dummy_input = torch.randn(10, 3, 224, 224, device='cuda')
model = torchvision.models.alexnet(pretrained=True).cuda()
# Providing input and output names sets the display names for values
# within the model's graph. Setting these does not change the semantics
# of the graph; it is only for readability.
#
# The inputs to the network consist of the flat list of inputs (i.e.
# the values you would pass to the forward() method) followed by the
# flat list of parameters. You can partially specify names, i.e. provide
# a list here shorter than the number of inputs to the model, and we will
# only set that subset of names, starting from the beginning.
input_names = [ "actual_input_1" ] + [ "learned_%d" % i for i in range(16) ]
output_names = [ "output1" ]
torch.onnx.export(model, dummy_input, "alexnet.onnx", verbose=True, input_names=input_names, output_names=output_names)
The resulting ``alexnet.onnx`` is a binary protobuf file which contains both
the network structure and parameters of the model you exported
(in this case, AlexNet). The keyword argument ``verbose=True`` causes the
exporter to print out a human-readable representation of the network::
# These are the inputs and parameters to the network, which have taken on
# the names we specified earlier.
graph(%actual_input_1 : Float(10, 3, 224, 224)
%learned_0 : Float(64, 3, 11, 11)
%learned_1 : Float(64)
%learned_2 : Float(192, 64, 5, 5)
%learned_3 : Float(192)
# ---- omitted for brevity ----
%learned_14 : Float(1000, 4096)
%learned_15 : Float(1000)) {
# Every statement consists of some output tensors (and their types),
# the operator to be run (with its attributes, e.g., kernels, strides,
# etc.), its input tensors (%actual_input_1, %learned_0, %learned_1)
%17 : Float(10, 64, 55, 55) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[11, 11], pads=[2, 2, 2, 2], strides=[4, 4]](%actual_input_1, %learned_0, %learned_1), scope: AlexNet/Sequential[features]/Conv2d[0]
%18 : Float(10, 64, 55, 55) = onnx::Relu(%17), scope: AlexNet/Sequential[features]/ReLU[1]
%19 : Float(10, 64, 27, 27) = onnx::MaxPool[kernel_shape=[3, 3], pads=[0, 0, 0, 0], strides=[2, 2]](%18), scope: AlexNet/Sequential[features]/MaxPool2d[2]
# ---- omitted for brevity ----
%29 : Float(10, 256, 6, 6) = onnx::MaxPool[kernel_shape=[3, 3], pads=[0, 0, 0, 0], strides=[2, 2]](%28), scope: AlexNet/Sequential[features]/MaxPool2d[12]
# Dynamic means that the shape is not known. This may be because of a
# limitation of our implementation (which we would like to fix in a
# future release) or shapes which are truly dynamic.
%30 : Dynamic = onnx::Shape(%29), scope: AlexNet
%31 : Dynamic = onnx::Slice[axes=[0], ends=[1], starts=[0]](%30), scope: AlexNet
%32 : Long() = onnx::Squeeze[axes=[0]](%31), scope: AlexNet
%33 : Long() = onnx::Constant[value={9216}](), scope: AlexNet
# ---- omitted for brevity ----
%output1 : Float(10, 1000) = onnx::Gemm[alpha=1, beta=1, broadcast=1, transB=1](%45, %learned_14, %learned_15), scope: AlexNet/Sequential[classifier]/Linear[6]
return (%output1);
}
You can also verify the protobuf using the `ONNX <https://github.com/onnx/onnx/>`_ library.
You can install ``ONNX`` with conda::
conda install -c conda-forge onnx
Then, you can run::
import onnx
# Load the ONNX model
model = onnx.load("alexnet.onnx")
# Check that the IR is well formed
onnx.checker.check_model(model)
# Print a human readable representation of the graph
onnx.helper.printable_graph(model.graph)
To run the exported script with `caffe2 <https://caffe2.ai/>`_, you will need to install `caffe2`: If you don't have one already, Please `follow the install instructions <https://caffe2.ai/docs/getting-started.html>`_.
Once these are installed, you can use the backend for Caffe2::
# ...continuing from above
import caffe2.python.onnx.backend as backend
import numpy as np
rep = backend.prepare(model, device="CUDA:0") # or "CPU"
# For the Caffe2 backend:
# rep.predict_net is the Caffe2 protobuf for the network
# rep.workspace is the Caffe2 workspace for the network
# (see the class caffe2.python.onnx.backend.Workspace)
outputs = rep.run(np.random.randn(10, 3, 224, 224).astype(np.float32))
# To run networks with more than one input, pass a tuple
# rather than a single numpy ndarray.
print(outputs[0])
You can also run the exported model with `ONNX Runtime <https://github.com/microsoft/onnxruntime>`_,
you will need to install `ONNX Runtime`: please `follow these instructions <https://github.com/microsoft/onnxruntime#installation>`_.
Once these are installed, you can use the backend for ONNX Runtime::
# ...continuing from above
import onnxruntime as ort
ort_session = ort.InferenceSession('alexnet.onnx')
outputs = ort_session.run(None, {'actual_input_1': np.random.randn(10, 3, 224, 224).astype(np.float32)})
print(outputs[0])
Here is another `tutorial of exporting the SuperResolution model to ONNX. <https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html>`_.
In the future, there will be backends for other frameworks as well.
Tracing vs Scripting
--------------------
The ONNX exporter can be both *trace-based* and *script-based* exporter.
* *trace-based* means that it operates by executing your model once, and exporting the operators which
were actually run during this run. This means that if your model is
dynamic, e.g., changes behavior depending on input data, the export
won't be accurate. Similarly, a trace is likely to be valid only
for a specific input size (which is one reason why we require explicit inputs
on tracing.) We recommend examining the model trace and making sure
the traced operators look reasonable. If your model contains control flows like
for loops and if conditions, *trace-based* exporter will unroll the loops and if conditions,
exporting a static graph that is exactly the same as this run. If you want
to export your model with dynamic control flows, you will need to use the *script-based* exporter.
* *script-based* means that the model you are trying to export is a `ScriptModule <jit.html>`_.
`ScriptModule` is the core data structure in `TorchScript`, and `TorchScript` is a subset of Python language,
that creates serializable and optimizable models from PyTorch code.
We allow mixing tracing and scripting. You can compose tracing and scripting to suit the particular requirements
of a part of a model. Checkout this example: ::
import torch
# Trace-based only
class LoopModel(torch.nn.Module):
def forward(self, x, y):
for i in range(y):
x = x + i
return x
model = LoopModel()
dummy_input = torch.ones(2, 3, dtype=torch.long)
loop_count = torch.tensor(5, dtype=torch.long)
torch.onnx.export(model, (dummy_input, loop_count), 'loop.onnx', verbose=True)
With *trace-based* exporter, we get the result ONNX graph which unrolls the for loop: ::
graph(%0 : Long(2, 3),
%1 : Long()):
%2 : Tensor = onnx::Constant[value={1}]()
%3 : Tensor = onnx::Add(%0, %2)
%4 : Tensor = onnx::Constant[value={2}]()
%5 : Tensor = onnx::Add(%3, %4)
%6 : Tensor = onnx::Constant[value={3}]()
%7 : Tensor = onnx::Add(%5, %6)
%8 : Tensor = onnx::Constant[value={4}]()
%9 : Tensor = onnx::Add(%7, %8)
return (%9)
To utilize *script-based* exporter for capturing the dynamic loop,
we can write the loop in script, and call it from the regular nn.Module: ::
# Mixing tracing and scripting
@torch.jit.script
def loop(x, y):
for i in range(int(y)):
x = x + i
return x
class LoopModel2(torch.nn.Module):
def forward(self, x, y):
return loop(x, y)
model = LoopModel2()
dummy_input = torch.ones(2, 3, dtype=torch.long)
loop_count = torch.tensor(5, dtype=torch.long)
torch.onnx.export(model, (dummy_input, loop_count), 'loop.onnx', verbose=True,
input_names=['input_data', 'loop_range'])
Now the exported ONNX graph becomes: ::
graph(%input_data : Long(2, 3),
%loop_range : Long()):
%2 : Long() = onnx::Constant[value={1}](), scope: LoopModel2/loop
%3 : Tensor = onnx::Cast[to=9](%2)
%4 : Long(2, 3) = onnx::Loop(%loop_range, %3, %input_data), scope: LoopModel2/loop # custom_loop.py:240:5
block0(%i.1 : Long(), %cond : bool, %x.6 : Long(2, 3)):
%8 : Long(2, 3) = onnx::Add(%x.6, %i.1), scope: LoopModel2/loop # custom_loop.py:241:13
%9 : Tensor = onnx::Cast[to=9](%2)
-> (%9, %8)
return (%4)
The dynamic control flow is captured correctly. We can verify in backends with different loop range. ::
import caffe2.python.onnx.backend as backend
import numpy as np
import onnx
model = onnx.load('loop.onnx')
rep = backend.prepare(model)
outputs = rep.run((dummy_input.numpy(), np.array(9).astype(np.int64)))
print(outputs[0])
#[[37 37 37]
# [37 37 37]]
import onnxruntime as ort
ort_sess = ort.InferenceSession('loop.onnx')
outputs = ort_sess.run(None, {'input_data': dummy_input.numpy(),
'loop_range': np.array(9).astype(np.int64)})
print(outputs)
#[array([[37, 37, 37],
# [37, 37, 37]], dtype=int64)]
To avoid exporting a variable scalar tensor as a fixed value constant as part of the ONNX model, please
avoid use of ``torch.Tensor.item()``. Torch supports implicit cast of single-element tensors to numbers.
E.g.: ::
class LoopModel(torch.nn.Module):
def forward(self, x, y):
res = []
arr = x.split(2, 0)
for i in range(int(y)):
res += [arr[i].sum(0, False)]
return torch.stack(res)
model = torch.jit.script(LoopModel())
inputs = (torch.randn(16), torch.tensor(8))
out = model(*inputs)
torch.onnx.export(model, inputs, 'loop_and_list.onnx', opset_version=11, example_outputs=out)
TorchVision support
-------------------
All TorchVision models, except for quantized versions, are exportable to ONNX.
More details can be found in `TorchVision <torchvision/models.html>`_.
Limitations
-----------
* Only tuples, lists and Variables are supported as JIT inputs/outputs. Dictionaries and strings are also accepted
but their usage is not recommended. Users need to verify their dict inputs carefully, and keep in mind that
dynamic lookups are not available.
* PyTorch and ONNX backends(Caffe2, ONNX Runtime, etc) often have implementations of operators with some
numeric differences. Depending on model structure, these differences
may be negligible, but they can also cause major divergences in behavior
(especially on untrained models.) We allow Caffe2 to call directly to Torch implementations of operators, to
help you smooth over these differences when precision is important,
and to also document these differences.
Supported operators
-------------------
The following operators are supported:
* BatchNorm
* ConstantPadNd
* Conv
* Dropout
* Embedding (no optional arguments supported)
* EmbeddingBag
* FeatureDropout (training mode not supported)
* Index
* MaxPool1d
* MaxPool2d
* MaxPool3d
* RNN
* abs
* absolute
* acos
* adaptive_avg_pool1d
* adaptive_avg_pool2d
* adaptive_avg_pool3d
* adaptive_max_pool1d
* adaptive_max_pool2d
* adaptive_max_pool3d
* add (nonzero alpha not supported)
* addmm
* and
* arange
* argmax
* argmin
* asin
* atan
* avg_pool1d
* avg_pool2d
* avg_pool2d
* avg_pool3d
* as_strided
* baddbmm
* bitshift
* cat
* ceil
* celu
* clamp
* clamp_max
* clamp_min
* concat
* copy
* cos
* cumsum
* det
* dim_arange
* div
* dropout
* einsum
* elu
* empty
* empty_like
* eq
* erf
* exp
* expand
* expand_as
* eye
* flatten
* floor
* floor_divide
* frobenius_norm
* full
* full_like
* gather
* ge
* gelu
* glu
* group_norm
* gt
* hardtanh
* im2col
* index_copy
* index_fill
* index_put
* index_select
* instance_norm
* interpolate
* isnan
* KLDivLoss
* layer_norm
* le
* leaky_relu
* len
* log
* log1p
* log2
* log_sigmoid
* log_softmax
* logdet
* logsumexp
* lt
* masked_fill
* masked_scatter
* masked_select
* max
* mean
* min
* mm
* mul
* multinomial
* narrow
* ne
* neg
* new_empty
* new_full
* new_zeros
* nll_loss
* nonzero
* norm
* ones
* ones_like
* or
* permute
* pixel_shuffle
* pow
* prelu (single weight shared among input channels not supported)
* prod
* rand
* randn
* randn_like
* reciprocal
* reflection_pad
* relu
* repeat
* replication_pad
* reshape
* reshape_as
* round
* rrelu
* rsqrt
* rsub
* scalar_tensor
* scatter
* scatter_add
* select
* selu
* sigmoid
* sign
* sin
* size
* slice
* softmax
* softplus
* sort
* split
* sqrt
* squeeze
* stack
* std
* sub (nonzero alpha not supported)
* sum
* t
* tan
* tanh
* threshold (non-zero threshold/non-zero value not supported)
* to
* topk
* transpose
* true_divide
* type_as
* unbind
* unfold (Prototype support with ATen-Caffe2 integration)
* unique
* unsqueeze
* upsample_nearest1d
* upsample_nearest2d
* upsample_nearest3d
* view
* weight_norm
* where
* zeros
* zeros_like
The operator set above is sufficient to export the following models:
* AlexNet
* DCGAN
* DenseNet
* Inception (warning: this model is highly sensitive to changes in operator
implementation)
* ResNet
* SuperResolution
* VGG
* `word_language_model <https://github.com/pytorch/examples/tree/master/word_language_model>`_
Adding support for operators
----------------------------
Adding export support for operators is an *advance usage*.
To achieve this, developers need to touch the source code of PyTorch.
Please follow the `instructions <https://github.com/pytorch/pytorch#from-source>`_
for installing PyTorch from source.
If the wanted operator is standardized in ONNX, it should be easy to add
support for exporting such operator (adding a symbolic function for the operator).
To confirm whether the operator is standardized or not, please check the
`ONNX operator list <https://github.com/onnx/onnx/blob/master/docs/Operators.md>`_.
ATen operators
~~~~~~~~~~~~~~
If the operator is an ATen operator, which means you can find the declaration
of the function in ``torch/csrc/autograd/generated/VariableType.h``
(available in generated code in PyTorch install dir), you should add the symbolic
function in ``torch/onnx/symbolic_opset<version>.py`` and follow the instructions listed as below:
* Define the symbolic function in ``torch/onnx/symbolic_opset<version>.py``, for example
`torch/onnx/symbolic_opset9.py <https://github.com/pytorch/pytorch/blob/master/torch/onnx/symbolic_opset9.py>`_.
Make sure the function has the same name as the ATen operator/function
defined in ``VariableType.h``.
* The first parameter is always the exported ONNX graph.
Parameter names must EXACTLY match the names in ``VariableType.h``,
because dispatch is done with keyword arguments.
* Parameter ordering does NOT necessarily match what is in ``VariableType.h``,
tensors (inputs) are always first, then non-tensor arguments.
* In the symbolic function, if the operator is already standardized in ONNX,
we only need to create a node to represent the ONNX operator in the graph.
* If the input argument is a tensor, but ONNX asks for a scalar, we have to
explicitly do the conversion. The helper function ``_scalar`` can convert a
scalar tensor into a python scalar, and ``_if_scalar_type_as`` can turn a
Python scalar into a PyTorch tensor.
Non-ATen operators
~~~~~~~~~~~~~~~~~~
If the operator is a non-ATen operator, the symbolic function has to be
added in the corresponding PyTorch Function class. Please read the following
instructions:
* Create a symbolic function named ``symbolic`` in the corresponding Function class.
* The first parameter is always the exported ONNX graph.
* Parameter names except the first must EXACTLY match the names in ``forward``.
* The output tuple size must match the outputs of ``forward``.
* In the symbolic function, if the operator is already standardized in ONNX,
we just need to create a node to represent the ONNX operator in the graph.
Symbolic functions should be implemented in Python. All of these functions interact
with Python methods which are implemented via C++-Python bindings,
but intuitively the interface they provide looks like this::
def operator/symbolic(g, *inputs):
"""
Modifies Graph (e.g., using "op"), adding the ONNX operations representing
this PyTorch function, and returning a Value or tuple of Values specifying the
ONNX outputs whose values correspond to the original PyTorch return values
of the autograd Function (or None if an output is not supported by ONNX).
Arguments:
g (Graph): graph to write the ONNX representation into
inputs (Value...): list of values representing the variables which contain
the inputs for this function
"""
class Value(object):
"""Represents an intermediate tensor value computed in ONNX."""
def type(self):
"""Returns the Type of the value."""
class Type(object):
def sizes(self):
"""Returns a tuple of ints representing the shape of a tensor this describes."""
class Graph(object):
def op(self, opname, *inputs, **attrs):
"""
Create an ONNX operator 'opname', taking 'args' as inputs
and attributes 'kwargs' and add it as a node to the current graph,
returning the value representing the single output of this
operator (see the `outputs` keyword argument for multi-return
nodes).
The set of operators and the inputs/attributes they take
is documented at https://github.com/onnx/onnx/blob/master/docs/Operators.md
Arguments:
opname (string): The ONNX operator name, e.g., `Abs` or `Add`.
args (Value...): The inputs to the operator; usually provided
as arguments to the `symbolic` definition.
kwargs: The attributes of the ONNX operator, with keys named
according to the following convention: `alpha_f` indicates
the `alpha` attribute with type `f`. The valid type specifiers are
`f` (float), `i` (int), `s` (string) or `t` (Tensor). An attribute
specified with type float accepts either a single float, or a
list of floats (e.g., you would say `dims_i` for a `dims` attribute
that takes a list of integers).
outputs (int, optional): The number of outputs this operator returns;
by default an operator is assumed to return a single output.
If `outputs` is greater than one, this functions returns a tuple
of output `Value`, representing each output of the ONNX operator
in positional.
"""
The ONNX graph C++ definition is in ``torch/csrc/jit/ir/ir.h``.
Here is an example of handling missing symbolic function for ``elu`` operator.
We try to export the model and see the error message as below::
UserWarning: ONNX export failed on elu because torch.onnx.symbolic_opset9.elu does not exist
RuntimeError: ONNX export failed: Couldn't export operator elu
The export fails because PyTorch does not support exporting ``elu`` operator.
We find ``virtual Tensor elu(const Tensor & input, Scalar alpha, bool inplace) const override;``
in ``VariableType.h``. This means ``elu`` is an ATen operator.
We check the `ONNX operator list <https://github.com/onnx/onnx/blob/master/docs/Operators.md>`_,
and confirm that ``Elu`` is standardized in ONNX.
We add the following lines to ``symbolic_opset9.py``::
def elu(g, input, alpha, inplace=False):
return g.op("Elu", input, alpha_f=_scalar(alpha))
Now PyTorch is able to export ``elu`` operator.
There are more examples in
`symbolic_opset9.py <https://github.com/pytorch/pytorch/blob/master/torch/onnx/symbolic_opset9.py>`_,
`symbolic_opset10.py <https://github.com/pytorch/pytorch/blob/master/torch/onnx/symbolic_opset10.py>`_.
The interface for specifying operator definitions is a Prototype feature;
adventurous users should note that the APIs will probably
change in a future interface.
Custom operators
~~~~~~~~~~~~~~~~
Following this tutorial `Extending TorchScript with Custom C++ Operators <https://pytorch.org/tutorials/advanced/torch_script_custom_ops.html>`_,
you can create and register your own custom ops implementation in PyTorch. Here's how to export such model to ONNX.::
# Create custom symbolic function
from torch.onnx.symbolic_helper import parse_args
@parse_args('v', 'v', 'f', 'i')
def symbolic_foo_forward(g, input1, input2, attr1, attr2):
return g.op("Foo", input1, input2, attr1_f=attr1, attr2_i=attr2)
# Register custom symbolic function
from torch.onnx import register_custom_op_symbolic
register_custom_op_symbolic('custom_ops::foo_forward', symbolic_foo_forward, 9)
class FooModel(torch.nn.Module):
def __init__(self, attr1, attr2):
super(FooModule, self).__init__()
self.attr1 = attr1
self.attr2 = attr2
def forward(self, input1, input2):
# Calling custom op
return torch.ops.custom_ops.foo_forward(input1, input2, self.attr1, self.attr2)
model = FooModel(attr1, attr2)
torch.onnx.export(model, (dummy_input1, dummy_input2), 'model.onnx', custom_opsets={"custom_domain": 2})
Depending on the custom operator, you can export it as one or a combination of existing ONNX ops.
You can also export it as a custom op in ONNX as well. In that case, you can specify the custom domain
and version (custom opset) using the ``custom_opsets`` dictionary at export. If not
explicitly specified, the custom opset version is set to 1 by default.
Using custom ONNX ops, you will need to extend the backend of your choice
with matching custom ops implementation, e.g. `Caffe2 custom ops <https://caffe2.ai/docs/custom-operators.html>`_,
`ONNX Runtime custom ops <https://github.com/microsoft/onnxruntime/blob/master/docs/AddingCustomOp.md>`_.
Operator Export Type
------------------------------------------------
Exporting models with unsupported ONNX operators can be achieved using the ``operator_export_type`` flag in export API.
This flag is useful when users try to export ATen and non-ATen operators that are not registered and supported in ONNX.
ONNX
~~~~
This mode is used to export all operators as regular ONNX operators. This is the default ``operator_export_type`` mode. ::
Example torch ir graph:
graph(%0 : Float(2:12, 3:4, 4:1)):
%3 : Float(2:12, 3:4, 4:1) = aten:exp(%0)
%4 : Float(2:12, 3:4, 4:1) = aten:div(%0, %3)
return (%4)
Is exported as:
graph(%0 : Float(2:12, 3:4, 4:1)):
%1 : Float(2:12, 3:4, 4:1) = onnx:Exp(%0)
%2 : Float(2:12, 3:4, 4:1) = onnx:Div(%0, %1)
return (%2)
ONNX_ATEN
~~~~~~~~~
This mode is used to export all operators as ATen ops, and avoid conversion to ONNX. ::
Example torch ir graph:
graph(%0 : Float(2:12, 3:4, 4:1)):
%3 : Float(2:12, 3:4, 4:1) = aten::exp(%0)
%4 : Float(2:12, 3:4, 4:1) = aten::div(%0, %3)
return (%4)
Is exported as:
graph(%0 : Float(2:12, 3:4, 4:1)):
%1 : Float(2:12, 3:4, 4:1) = aten::ATen[operator="exp"](%0)
%2 : Float(2:12, 3:4, 4:1) = aten::ATen[operator="div"](%0, %1)
return (%2)
ONNX_ATEN_FALLBACK
~~~~~~~~~~~~~~~~~~
To fallback on unsupported ATen operators in ONNX. Supported operators are exported to ONNX regularly.
In the following example, aten::triu is not supported in ONNX. Exporter falls back on this operator. ::
Example torch ir graph:
graph(%0 : Float):
%3 : int = prim::Constant[value=0]()
%4 : Float = aten::triu(%0, %3) # unsupported op
%5 : Float = aten::mul(%4, %0) # registered op
return (%5)
is exported as:
graph(%0 : Float):
%1 : Long() = onnx::Constant[value={0}]()
%2 : Float = aten::ATen[operator="triu"](%0, %1) # unsupported op
%3 : Float = onnx::Mul(%2, %0) # registered op
return (%3)
RAW
~~~
To export a raw ir. ::
Example torch ir graph:
graph(%x.1 : Float(1:1)):
%1 : Tensor = aten::exp(%x.1)
%2 : Tensor = aten::div(%x.1, %1)
%y.1 : Tensor[] = prim::ListConstruct(%2)
return (%y.1)
is exported as:
graph(%x.1 : Float(1:1)):
%1 : Tensor = aten::exp(%x.1)
%2 : Tensor = aten::div(%x.1, %1)
%y.1 : Tensor[] = prim::ListConstruct(%2)
return (%y.1)
ONNX_FALLTHROUGH
~~~~~~~~~~~~~~~~
This mode can be used to export any operator (ATen or non-ATen) that is not registered and supported in ONNX.
Exported falls through and exports the operator as is, as custom op. Exporting custom operators
enables users to register and implement the operator as part of their runtime backend. ::
Example torch ir graph:
graph(%0 : Float(2:12, 3:4, 4:1),
%1 : Float(2:12, 3:4, 4:1)):
%6 : Float(2:12, 3:4, 4:1) = foo_namespace::bar(%0, %1) # custom op
%7 : Float(2:12, 3:4, 4:1) = aten::div(%6, %0) # registered op
return (%7))
is exported as:
graph(%0 : Float(2:12, 3:4, 4:1),
%1 : Float(2:12, 3:4, 4:1)):
%2 : Float(2:12, 3:4, 4:1) = foo_namespace::bar(%0, %1) # custom op
%3 : Float(2:12, 3:4, 4:1) = onnx::Div(%2, %0) # registered op
return (%3
Frequently Asked Questions
--------------------------
Q: I have exported my lstm model, but its input size seems to be fixed?
The tracer records the example inputs shape in the graph. In case the model should accept
inputs of dynamic shape, you can utilize the parameter `dynamic_axes` in export api. ::
layer_count = 4
model = nn.LSTM(10, 20, num_layers=layer_count, bidirectional=True)
model.eval()
with torch.no_grad():
input = torch.randn(5, 3, 10)
h0 = torch.randn(layer_count * 2, 3, 20)
c0 = torch.randn(layer_count * 2, 3, 20)
output, (hn, cn) = model(input, (h0, c0))
# default export
torch.onnx.export(model, (input, (h0, c0)), 'lstm.onnx')
onnx_model = onnx.load('lstm.onnx')
# input shape [5, 3, 10]
print(onnx_model.graph.input[0])
# export with `dynamic_axes`
torch.onnx.export(model, (input, (h0, c0)), 'lstm.onnx',
input_names=['input', 'h0', 'c0'],
output_names=['output', 'hn', 'cn'],
dynamic_axes={'input': {0: 'sequence'}, 'output': {0: 'sequence'}})
onnx_model = onnx.load('lstm.onnx')
# input shape ['sequence', 3, 10]
print(onnx_model.graph.input[0])
Q: How to export models with loops in it?
Please checkout `Tracing vs Scripting`_.
Q: Does ONNX support implicit scalar datatype casting?
No, but the exporter will try to handle that part. Scalars are converted to constant tensors in ONNX.
The exporter will try to figure out the right datatype for scalars. However for cases that it failed
to do so, you will need to manually provide the datatype information. This often happens with scripted models,
where the datatypes are not recorded. We are trying to improve the datatype
propagation in the exporter such that manual changes are not required in the future. ::
class ImplicitCastType(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
# Exporter knows x is float32, will export '2' as float32 as well.
y = x + 2
# Without type propagation, exporter doesn't know the datatype of y.
# Thus '3' is exported as int64 by default.
return y + 3
# The following will export correctly.
# return y + torch.tensor([3], dtype=torch.float32)
x = torch.tensor([1.0], dtype=torch.float32)
torch.onnx.export(ImplicitCastType(), x, 'models/implicit_cast.onnx',
example_outputs=ImplicitCastType()(x))
Q: Is tensor in-place indexed assignment like `data[index] = new_data` supported?
Yes, this is supported now for ONNX opset version >= 11. E.g.: ::
data = torch.zeros(3, 4)
new_data = torch.arange(4).to(torch.float32)
# Assigning to left hand side indexing is supported in ONNX opset >= 11.
class InPlaceIndexedAssignment(torch.nn.Module):
def forward(self, data, new_data):
data[1] = new_data
return data
out = InPlaceIndexedAssignment()(data, new_data)
data = torch.zeros(3, 4)
new_data = torch.arange(4).to(torch.float32)
torch.onnx.export(InPlaceIndexedAssignment(), (data, new_data), 'inplace_assign.onnx', opset_version=11)
# onnxruntime
import onnxruntime
sess = onnxruntime.InferenceSession('inplace_assign.onnx')
out_ort = sess.run(None, {
sess.get_inputs()[0].name: torch.zeros(3, 4).numpy(),
sess.get_inputs()[1].name: new_data.numpy(),
})
assert torch.all(torch.eq(out, torch.tensor(out_ort)))
Q: Is tensor list exportable to ONNX?
Yes, this is supported now for ONNX opset version >= 11. ONNX introduced the concept of Sequence in opset 11.
Similar to list, Sequence is a data type that contains arbitrary number of Tensors.
Associated operators are also introduced in ONNX, such as SequenceInsert, SequenceAt, etc.
However, in-place list append within loops is not exportable to ONNX. To implement this, please use inplace
add operator.
E.g.: ::
class ListLoopModel(torch.nn.Module):
def forward(self, x):
res = []
res1 = []
arr = x.split(2, 0)
res2 = torch.zeros(3, 4, dtype=torch.long)
for i in range(len(arr)):
res += [arr[i].sum(0, False)]
res1 += [arr[-1 - i].sum(0, False)]
res2 += 1
return torch.stack(res), torch.stack(res1), res2
model = torch.jit.script(ListLoopModel())
inputs = torch.randn(16)
out = model(inputs)
torch.onnx.export(model, (inputs, ), 'loop_and_list.onnx', opset_version=11, example_outputs=out)
# onnxruntime
import onnxruntime
sess = onnxruntime.InferenceSession('loop_and_list.onnx')
out_ort = sess.run(None, {
sess.get_inputs()[0].name: inputs.numpy(),
})
assert [torch.allclose(o, torch.tensor(o_ort)) for o, o_ort in zip(out, out_ort)]
Use external data format
------------------------
``use_external_data_format`` argument in export API enables export of models in ONNX external
data format. With this option enabled, the exporter stores some model parameters in external
binary files, rather than the ONNX file itself. These external binary files are stored in the
same location as the ONNX file. Argument 'f' must be a string specifying the location of the model. ::
model = torchvision.models.mobilenet_v2(pretrained=True)
input = torch.randn(2, 3, 224, 224, requires_grad=True)
torch.onnx.export(model, (input, ), './large_model.onnx', use_external_data_format=True)
This argument enables export of large models to ONNX. Models larger than 2GB cannot be exported
in one file because of the protobuf size limit. Users should set ``use_external_data_format`` to
``True`` to successfully export such models.
Training
--------
``Training`` argument in export API allows users to export models in a training-friendly mode.
``TrainingMode.TRAINING`` exports model in a training-friendly mode that avoids certain model
optimizations which might interfere with model parameter training. ``TrainingMode.PRESERVE``
exports the model in inference mode if ``model.training`` is ``False``. Otherwise, it exports
the model in a training-friendly mode.
The default mode for this argument is ``TrainingMode.EVAL`` which exports the model in
inference mode.
Functions
--------------------------
.. autofunction:: export
.. autofunction:: export_to_pretty_string
.. autofunction:: register_custom_op_symbolic
.. autofunction:: torch.onnx.operators.shape_as_tensor
.. autofunction:: select_model_mode_for_export
.. autofunction:: is_in_onnx_export
|