1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
import torch
import functools
from torch import Tensor
from typing import Any, Callable, Optional, Tuple, Union
import warnings
in_dims_t = Union[int, Tuple[Optional[int], ...]]
out_dims_t = Union[int, Tuple[int, ...]]
# Checks that all args-to-be-batched have the same batch dim size
def _validate_and_get_batch_size(
in_dims_as_tuple: Tuple[Optional[int], ...],
args: Tuple) -> int:
batch_sizes = [arg.size(in_dim) for in_dim, arg in zip(in_dims_as_tuple, args)
if in_dim is not None]
if batch_sizes and any([size != batch_sizes[0] for size in batch_sizes]):
raise ValueError(
f'vmap: Expected all tensors to have the same size in the mapped '
f'dimension, got sizes {batch_sizes} for the mapped dimension')
return batch_sizes[0]
# Check compatibility of `in_dims` and `args`. More specifically, checks the following:
# Wherever an in_dim is not None, then the corresponding index in args must be
# a Tensor. Furthermore, tensor must have the `in_dim` (0 <= in_dim < tensor.dim())
def _check_args_can_be_mapped_with_in_dims(
in_dims_as_tuple: Tuple[Optional[int], ...],
args: Tuple,
func: Callable,
in_dims: in_dims_t) -> None:
for idx, (in_dim, arg) in enumerate(zip(in_dims_as_tuple, args)):
if in_dim is None:
continue
if not isinstance(in_dim, int):
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): in_dims '
f'must be a flat tuple containing ints and/or Nones. If you were '
f'trying to vmap over a Tensor inside a Python collection in '
f'`inputs`, we do not yet support that.')
if not isinstance(arg, Tensor):
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): Got '
f'in_dim={in_dim} for input {idx}, but input {idx} is not a '
f'Tensor (got {type(arg)}) so it cannot be vmap\'ed over. '
f'If you were trying to vmap over a Tensor inside a Python '
f'collection in `inputs`, we do not yet support that; otherwise, '
f'use None as the respective in_dim for input {idx}.')
# NB: We don't do dimension wrapping here. Consider allowing it in the
# future if there is demand.
if in_dim >= 0 and in_dim < arg.dim():
continue
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): Got in_dim={in_dim} '
f'for input {idx}, but input {idx} is a Tensor of dimensionality '
f'{arg.dim()} so expected in_dim to satisfy 0 <= in_dim < {arg.dim()}.')
def _num_outputs(batched_outputs: Union[Tensor, Tuple[Tensor, ...]]) -> int:
if isinstance(batched_outputs, tuple):
return len(batched_outputs)
return 1
# If value is a tuple, check it has length `num_elements`.
# If value is not a tuple, make a tuple with `value` repeated `num_elements` times
def _as_tuple(value: Any, num_elements: int, error_message_lambda: Callable[[], str]) -> Tuple:
if not isinstance(value, tuple):
return (value,) * num_elements
if len(value) != num_elements:
raise ValueError(error_message_lambda())
return value
# Creates BatchedTensors for every Tensor in arg that should be batched.
# Returns the (potentially) batched arguments and the batch_size.
def _create_batched_inputs(
in_dims: in_dims_t, args: Tuple, vmap_level: int, func: Callable) -> Tuple[Tuple, int]:
if not isinstance(in_dims, int) and not isinstance(in_dims, tuple):
raise ValueError(
f'vmap({_get_name(func)}, in_dims={in_dims}, ...): expected `in_dims` to '
f'be int or tuple, got: {type(in_dims)}.')
# NB: Checks that len(in_dims) == len(args) (if in_dims is a tuple).
in_dims_as_tuple = _as_tuple(
in_dims, len(args),
lambda: f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): expected '
f'one `in_dim` per input (got {len(args)} inputs) of {_get_name(func)}')
if len(args) == 0:
raise ValueError(
f'vmap({_get_name(func)})(<inputs>): got no inputs. Maybe you forgot to add '
f'inputs, or you are trying to vmap over a function with no inputs. '
f'The latter is unsupported.')
_check_args_can_be_mapped_with_in_dims(in_dims_as_tuple, args, func, in_dims)
batch_size = _validate_and_get_batch_size(in_dims_as_tuple, args)
# See NOTE [Ignored _remove_batch_dim, _add_batch_dim]
batched_inputs = tuple(arg if in_dim is None else
torch._add_batch_dim(arg, in_dim, vmap_level) # type: ignore
for in_dim, arg in zip(in_dims_as_tuple, args))
return batched_inputs, batch_size
# Undos the batching (and any batch dimensions) associated with the `vmap_level`.
def _unwrap_batched(
batched_outputs: Union[Tensor, Tuple[Tensor, ...]],
out_dims: out_dims_t,
vmap_level: int, batch_size: int, func: Callable) -> Tuple:
num_outputs = _num_outputs(batched_outputs)
out_dims_as_tuple = _as_tuple(
out_dims, num_outputs,
lambda: f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must '
f'have one dim per output (got {num_outputs} outputs) of {_get_name(func)}.')
# NOTE [Ignored _remove_batch_dim, _add_batch_dim]
# There is something wrong with our type bindings for functions that begin
# with '_', see #40397.
if isinstance(batched_outputs, Tensor):
out_dim = out_dims_as_tuple[0]
return torch._remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore
return tuple(torch._remove_batch_dim(out, vmap_level, batch_size, out_dim) # type: ignore
for out, out_dim in zip(batched_outputs, out_dims_as_tuple))
# Checks that `fn` returned one or more Tensors and nothing else.
# NB: A python function that return multiple arguments returns a single tuple,
# so we are effectively checking that `outputs` is a single Tensor or a tuple of
# Tensors.
def _validate_outputs(outputs: Any, func: Callable) -> None:
if isinstance(outputs, Tensor):
return
if not isinstance(outputs, tuple):
raise ValueError(f'vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return '
f'Tensors, got type {type(outputs)} as the return.')
for idx, output in enumerate(outputs):
if isinstance(output, Tensor):
continue
raise ValueError(f'vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return '
f'Tensors, got type {type(output)} for return {idx}.')
def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, func: Callable) -> None:
if isinstance(out_dims, int):
return
if not isinstance(out_dims, tuple) or \
not all([isinstance(out_dim, int) for out_dim in out_dims]):
raise ValueError(
f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be '
f'an int or a tuple of int representing where in the outputs the '
f'vmapped dimension should appear.')
def _get_name(func: Callable):
if hasattr(func, '__name__'):
return func.__name__
# Not all callables have __name__, in fact, only static functions/methods do.
# A callable created via functools.partial or an nn.Module, to name some
# examples, don't have a __name__.
fn_name = repr(func)
# vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors,
# sends those into func, and then unwraps the output BatchedTensors. Operations
# on BatchedTensors perform the batched operations that the user is asking for.
def vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable:
"""
vmap is the vectorizing map. Returns a new function that maps `func` over some
dimension of the inputs. Semantically, vmap pushes the map into PyTorch
operations called by `func`, effectively vectorizing those operations.
vmap is useful for handling batch dimensions: one can write a function `func`
that runs on examples and then lift it to a function that can take batches of
examples with `vmap(func)`. vmap can also be used to compute batched
gradients when composed with autograd.
.. warning::
torch.vmap is an experimental prototype that is subject to
change and/or deletion. Please use at your own risk.
.. note::
If you're interested in using vmap for your use case, please
`contact us! <https://github.com/pytorch/pytorch/issues/42368>`_
We're interested in gathering feedback from early adopters to inform
the design.
Args:
func (function): A Python function that takes one or more arguments.
Must return one or more Tensors.
in_dims (int or Tuple[Optional[int]]): Specifies which dimension of the
inputs should be mapped over. If `in_dims` is a Tuple, then it should have
one element per input. If the `in_dim` for a particular input is
None, then that indicates there is no map dimension. Default: 0.
out_dims (int or Tuple[int]): Specifies where the mapped dimension
should appear in the outputs. If `out_dims` is a Tuple, then it should
have one element per output. Default: 0.
Returns:
Returns a new "batched" function. It takes the same inputs as `func`,
except each input has an extra dimension at the index specified by `in_dims`.
It takes returns the same outputs as `func`, except each output has
an extra dimension at the index specified by `out_dims`.
.. warning:
vmap works best with functional-style code. Please do not perform any
side-effects in `func`, with the exception of in-place PyTorch operations.
Examples of side-effects include mutating Python data structures and
assigning values to variables not captured in `func`.
One example of using `vmap` is to compute batched dot products. PyTorch
doesn't provide a batched `torch.dot` API; instead of unsuccessfully
rummaging through docs, use `vmap` to construct a new function.
>>> torch.dot # [D], [D] -> []
>>> batched_dot = torch.vmap(torch.dot) # [N, D], [N, D] -> [N]
>>> x, y = torch.randn(2, 5), torch.randn(2, 5)
>>> batched_dot(x, y)
`vmap` can be helpful in hiding batch dimensions, leading to a simpler
model authoring experience.
>>> batch_size, feature_size = 3, 5
>>> weights = torch.randn(feature_size, requires_grad=True)
>>>
>>> def model(feature_vec):
>>> # Very simple linear model with activation
>>> return feature_vec.dot(weights).relu()
>>>
>>> examples = torch.randn(batch_size, feature_size)
>>> result = torch.vmap(model)(examples)
`vmap` can also help vectorize computations that were previously difficult
or impossible to batch. One example is higher-order gradient computation.
The PyTorch autograd engine computes vjps (vector-Jacobian products).
Computing a full Jacobian matrix for some function f: R^N -> R^N usually
requires N calls to `autograd.grad`, one per Jacobian row. Using `vmap`,
we can vectorize the whole computation, computing the Jacobian in a single
call to `autograd.grad`.
>>> # Setup
>>> N = 5
>>> f = lambda x: x ** 2
>>> x = torch.randn(N, requires_grad=True)
>>> y = f(x)
>>> I_N = torch.eye(N)
>>>
>>> # Sequential approach
>>> jacobian_rows = [torch.autograd.grad(y, x, v, retain_graph=True)[0]
>>> for v in I_N.unbind()]
>>> jacobian = torch.stack(jacobian_rows)
>>>
>>> # vectorized gradient computation
>>> def get_vjp(v):
>>> return torch.autograd.grad(y, x, v)
>>> jacobian = torch.vmap(get_vjp)(I_N)
.. note::
vmap does not provide general autobatching or handle variable-length
sequences out of the box.
"""
warnings.warn(
'torch.vmap is an experimental prototype that is subject to '
'change and/or deletion. Please use at your own risk.')
@functools.wraps(func)
def wrapped(*args):
_check_out_dims_is_int_or_int_tuple(out_dims, func)
vmap_level = torch._C._vmapmode_increment_nesting()
try:
batched_inputs, batch_size = _create_batched_inputs(in_dims, args, vmap_level, func)
batched_outputs = func(*batched_inputs)
_validate_outputs(batched_outputs, func)
return _unwrap_batched(batched_outputs, out_dims, vmap_level, batch_size, func)
finally:
torch._C._vmapmode_decrement_nesting()
return wrapped
|