File: profiler.py

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (1350 lines) | stat: -rw-r--r-- 54,299 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
import itertools
from typing import Any
import torch
from torch.futures import Future

from collections import defaultdict, namedtuple
from operator import attrgetter

from typing import List, Dict, Tuple, Optional

try:
    # Available in Python >= 3.2
    from contextlib import ContextDecorator
except ImportError:
    import functools

    class ContextDecorator(object):  # type: ignore[no-redef]

        def __enter__(self):
            raise NotImplementedError

        def __exit__(self, exc_type, exc_val, exc_tb):
            raise NotImplementedError

        def __call__(self, func):
            @functools.wraps(func)
            def wrapped(*args, **kwargs):
                with self:
                    return func(*args, **kwargs)

            return wrapped


class EventList(list):
    """A list of Events (for pretty printing)"""
    def __init__(self, *args, **kwargs):
        use_cuda = kwargs.pop('use_cuda', True)
        profile_memory = kwargs.pop('profile_memory', False)
        super(EventList, self).__init__(*args, **kwargs)
        self._cpu_children_populated = False
        self._use_cuda = use_cuda
        self._profile_memory = profile_memory

    def __str__(self):
        return self.table()

    def populate_cpu_children(self):
        """Populates child events into each underlying FunctionEvent object.
        One event is a child of another if [s1, e1) is inside [s2, e2). Where
        s1 and e1 would be start and end of the child event's interval. And
        s2 and e2 start and end of the parent event's interval

        Example: In event list [[0, 10], [1, 3], [3, 4]] would have make [0, 10]
        be a parent of two other intervals.

        If for any reason two intervals intersect only partially, this function
        will not record a parent child relationship between then.
        """
        if self.cpu_children_populated:
            return

        # Some events can be async (i.e. start and end on different threads),
        # since it's generally undefined how to attribute children ranges to
        # async ranges, we do not use them when calculating nested ranges and stats
        sync_events = [evt for evt in self if not evt.is_async]
        events = sorted(
            sync_events,
            key=attrgetter("thread"),
        )
        # Group by both thread and node_id, so that events that happen to have
        # the same thread_id but are from different nodes aren't incorrectly
        # grouped together.
        threads = itertools.groupby(
            events, key=lambda event: (event.thread, event.node_id)
        )

        # For each thread we keep a stack of current nested parents.
        # We maintain the invariant that each interval is a subset of all other
        # intervals lower in the stack.
        #
        # First we sort the intervals by their start time. Then we iterate over them.
        # Every time we see a new interval we remove several parents from
        # the top until we restore the invariant. Then parent child relationship
        # if recorded if the stack is not empty.
        # Finally we add new interval to the list
        #
        # Algorithm has O(N * log(N)) complexity where N is number of
        # intervals
        for thread_id, thread_events in threads:
            thread_events_ = sorted(
                thread_events,
                key=lambda event: [event.cpu_interval.start, -event.cpu_interval.end],
            )
            current_events: List[FunctionEvent] = []
            cur_end = 0
            for event in thread_events_:
                while len(current_events) > 0:
                    parent = current_events[-1]
                    if event.cpu_interval.start >= parent.cpu_interval.end or \
                            event.cpu_interval.end > parent.cpu_interval.end:
                        # this can't be a parent
                        current_events.pop()
                    else:
                        parent.append_cpu_child(event)
                        assert (
                            event.cpu_parent is None
                        ), "There is already a CPU parent event for {}".format(
                            event.key
                        )
                        event.set_cpu_parent(parent)
                        break

                current_events.append(event)

        self._cpu_children_populated = True

    def set_backward_stacktraces(self):
        self.populate_cpu_children()

        def bw_parent(evt):
            if evt is None:
                return None
            elif evt.scope == 1:
                return evt
            else:
                return bw_parent(evt.cpu_parent)

        fwd_stacks = {}
        for evt in self:
            if bw_parent(evt) is None:
                t = (evt.sequence_nr, evt.thread)
                if t not in fwd_stacks:
                    fwd_stacks[t] = evt.stack

        for evt in self:
            p = bw_parent(evt)
            if p is not None:
                assert p.fwd_thread is not None
                t = (p.sequence_nr, p.fwd_thread)
                if t in fwd_stacks:
                    evt.stack = fwd_stacks[t]
                else:
                    evt.stack = []


    @property
    def self_cpu_time_total(self):
        return sum([event.self_cpu_time_total for event in self])

    @property
    def cpu_children_populated(self):
        return self._cpu_children_populated

    def table(self, sort_by=None, row_limit=100, header=None, top_level_events_only=False):
        """Prints an EventList as a nicely formatted table.

        Arguments:
            sort_by (str, optional): Attribute used to sort entries. By default
                they are printed in the same order as they were registered.
                Valid keys include: ``cpu_time``, ``cuda_time``, ``cpu_time_total``,
                ``cuda_time_total``, ``cpu_memory_usage``, ``cuda_memory_usage``,
                ``self_cpu_memory_usage``, ``self_cuda_memory_usage``, ``count``.
            top_level_events_only(bool, optional): Boolean flag to determine the
                selection of events to display. If true, the profiler will only
                display events at top level like top-level invocation of python
                `lstm`, python `add` or other functions, nested events like low-level
                cpu/cuda ops events are omitted for profiler result readability.

        Returns:
            A string containing the table.
        """
        return build_table(
            self,
            sort_by=sort_by,
            row_limit=row_limit,
            header=header,
            use_cuda=self._use_cuda,
            profile_memory=self._profile_memory,
            top_level_events_only=top_level_events_only)

    def export_chrome_trace(self, path):
        """Exports an EventList as a Chrome tracing tools file.

        The checkpoint can be later loaded and inspected under ``chrome://tracing`` URL.

        Arguments:
            path (str): Path where the trace will be written.
        """
        import os
        with open(path, 'w') as f:
            chrome_events = []
            next_id = 0
            # Use file IO over using json.dump since JSON dumping is very slow and
            # this technique is proven to give a 4x speedup.
            f.write("[")
            for evt in self:
                f.write(
                    '{"name": "%s", '
                    '"ph": "X", '
                    '"ts": %s, '
                    '"dur": %s, '
                    '"tid": %s, '
                    '"pid": "CPU functions", '
                    '"args": {}}, '
                    % (
                        evt.name,
                        evt.cpu_interval.start,
                        evt.cpu_interval.elapsed_us(),
                        evt.thread
                        if not evt.is_remote
                        else f'" node_id:{evt.node_id}, thread_id:{evt.thread} "',
                    )
                )
                for k in evt.kernels:
                    # 's' and 'f' draw Flow arrows from
                    # the CPU launch to the GPU kernel
                    f.write('{"name": "%s", '
                            '"ph": "s", '
                            '"ts": %s, '
                            '"tid": %s, '
                            '"pid": "CPU functions", '
                            '"id": %s, '
                            '"cat": "cpu_to_cuda", '
                            '"args": {}}, ' % (evt.name, evt.cpu_interval.start,
                                               evt.thread, next_id))
                    f.write('{"name": "%s", '
                            '"ph": "f", '
                            '"ts": %s, '
                            '"tid": %s, '
                            '"pid": "CUDA functions", '
                            '"id": %s, '
                            '"cat": "cpu_to_cuda", '
                            '"args": {}}, ' % (k.name, k.interval.start, k.device, next_id))
                    f.write('{"name": "%s", '
                            '"ph": "X", '
                            '"ts": %s, '
                            '"dur": %s, '
                            '"tid": %s, '
                            '"pid": "CUDA functions", '
                            '"args": {}}, ' % (k.name, k.interval.start,
                                               k.interval.elapsed_us(), k.device))
                    next_id += 1

            # remove trailing whitespace and comma
            f.seek(f.tell() - 2, os.SEEK_SET)
            f.truncate()
            f.write("]")

    def key_averages(self, group_by_input_shapes=False, group_by_stack_n=0):
        """Averages all function events over their keys.

        Arguments:
            group_by_input_shapes: group entries by
            (event name, input shapes) rather than just event name.
            This is useful to see which input shapes contribute to the runtime
            the most and may help with size-specific optimizations or
            choosing the best candidates for quantization (aka fitting a roof line)

            group_by_stack_n: group by top n stack trace entries

        Returns:
            An EventList containing FunctionEventAvg objects.
        """
        self.populate_cpu_children()
        stats: Dict[Tuple[int, Tuple[int, int]], FunctionEventAvg] = defaultdict(FunctionEventAvg)

        def get_key(event, group_by_input_shapes, group_by_stack_n):
            key = [str(event.key), str(event.node_id)]
            if group_by_input_shapes:
                key.append(str(event.input_shapes))
            if group_by_stack_n > 0:
                key += event.stack[:group_by_stack_n]
            return tuple(key)
        for evt in self:
            stats[get_key(evt, group_by_input_shapes, group_by_stack_n)].add(evt)

        avg_list = EventList(stats.values(), use_cuda=self._use_cuda, profile_memory=self._profile_memory)
        for evt in avg_list:
            evt.stack = evt.stack[:group_by_stack_n]
            if not group_by_input_shapes:
                evt.input_shapes = ""
        return avg_list

    def total_average(self):
        """Averages all events.

        Returns:
            A FunctionEventAvg object.
        """
        total_stat = FunctionEventAvg()
        for evt in self:
            total_stat += evt
            total_stat.key = None
        total_stat.key = 'Total'
        return total_stat


class profile(object):
    """Context manager that manages autograd profiler state and holds a summary of results.
    Under the hood it just records events of functions being executed in C++ and
    exposes those events to Python. You can wrap any code into it and it will
    only report runtime of PyTorch functions.
    Note: profiler is thread local and is automatically propagated into the async tasks

    Arguments:
        enabled (bool, optional): Setting this to False makes this context manager a no-op.
            Default: ``True``.

        use_cuda (bool, optional): Enables timing of CUDA events as well using the cudaEvent API.
            Adds approximately 4us of overhead to each tensor operation.
            Default: ``False``

        record_shapes (bool, optional): If shapes recording is set, information
            about input dimensions will be collected. This allows one to see which
            dimensions have been used under the hood and further group by them
            using prof.key_averages(group_by_input_shape=True). Please note that
            shape recording might skew your profiling data. It is recommended to
            use separate runs with and without shape recording to validate the timing.
            Most likely the skew will be negligible for bottom most events (in a case
            of nested function calls). But for higher level functions the total
            self cpu time might be artificially increased because of the shape
            collection.

        profile_memory (bool, optional): Whether to report memory usage, default: ``False``

        with_stack (bool, optional): record source information (file and line number) for the ops

    .. warning:
        Enabling memory profiling or source attribution incurs additional profiler
        overhead

    .. warning:
        This context managers should not be called recursively, i.e. no nested
        instances are allowed

    .. warning:
        Due to some CUDA multiprocessing limitations (multiprocessing-cuda-note_),
        one cannot use the profiler with ``use_cuda = True`` to benchmark
        DataLoaders with ``num_workers > 0``. If you wish to benchmark data loading,
        please use ``use_cuda = False`` or ``num_workers = 0``.

    Example:
        >>> x = torch.randn((1, 1), requires_grad=True)
        >>> with torch.autograd.profiler.profile() as prof:
        >>>     for _ in range(100):  # any normal python code, really!
        >>>         y = x ** 2
        >>          y.backward()
        >>> # NOTE: some columns were removed for brevity
        >>> print(prof.key_averages().table(sort_by="self_cpu_time_total"))
        -----------------------------------  ---------------  ---------------  ---------------
        Name                                 Self CPU total   CPU time avg     Number of Calls
        -----------------------------------  ---------------  ---------------  ---------------
        mul                                  32.048ms         32.048ms         200
        pow                                  27.041ms         27.041ms         200
        PowBackward0                         9.727ms          55.483ms         100
        torch::autograd::AccumulateGrad      9.148ms          9.148ms          100
        torch::autograd::GraphRoot           691.816us        691.816us        100
        -----------------------------------  ---------------  ---------------  ---------------

    """
    def __init__(
            self,
            enabled=True,
            use_cuda=False,
            record_shapes=False,
            profile_memory=False,
            with_stack=False):
        self.enabled = enabled
        self.use_cuda = use_cuda
        self.function_events = None
        if not self.enabled:
            return
        self.entered = False
        self.record_shapes = record_shapes
        self.profile_memory = profile_memory
        self.with_stack = with_stack

    def __enter__(self):
        if not self.enabled:
            return
        if self.entered:
            raise RuntimeError("autograd profiler traces are not reentrant")
        self.entered = True
        profiler_kind = torch.autograd.ProfilerState.CUDA if self.use_cuda \
            else torch.autograd.ProfilerState.CPU

        config = torch.autograd.ProfilerConfig(
            profiler_kind,
            self.record_shapes,
            self.profile_memory,
            self.with_stack)
        torch.autograd._enable_profiler(config)
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.enabled:
            return
        records = torch.autograd._disable_profiler()
        self.function_events = EventList(
            parse_event_records(records),
            use_cuda=self.use_cuda,
            profile_memory=self.profile_memory)
        if self.with_stack:
            self.function_events.set_backward_stacktraces()
        return False

    def __repr__(self):
        if self.function_events is None:
            return '<unfinished torch.autograd.profile>'
        return repr(self.function_events)

    def __str__(self):
        if self.function_events is None:
            return '<unfinished torch.autograd.profile>'
        self.function_events.populate_cpu_children()
        return str(self.function_events)

    def _check_finish(self):
        if self.function_events is None:
            raise RuntimeError("can't export a trace that didn't finish running")
        self.function_events.populate_cpu_children()

    def table(self, sort_by=None, row_limit=100, header=None, top_level_events_only=False):
        self._check_finish()
        assert self.function_events is not None
        return self.function_events.table(
            sort_by=sort_by, row_limit=row_limit, header=header,
            top_level_events_only=top_level_events_only
        )
    table.__doc__ = EventList.table.__doc__

    def export_chrome_trace(self, path):
        self._check_finish()
        assert self.function_events is not None
        return self.function_events.export_chrome_trace(path)
    export_chrome_trace.__doc__ = EventList.export_chrome_trace.__doc__

    def key_averages(self, group_by_input_shape=False, group_by_stack_n=0):
        self._check_finish()
        assert self.function_events is not None
        return self.function_events.key_averages(group_by_input_shape, group_by_stack_n)
    key_averages.__doc__ = EventList.key_averages.__doc__

    def total_average(self):
        self._check_finish()
        assert self.function_events is not None
        return self.function_events.total_average()
    total_average.__doc__ = EventList.total_average.__doc__

    @property
    def self_cpu_time_total(self):
        """ Returns total time spent on CPU obtained as a sum of
        all self times across all the events.
        """
        self._check_finish()
        assert self.function_events is not None
        return self.function_events.self_cpu_time_total


class record_function(ContextDecorator):
    """Context manager/function decorator that adds a label to a block of
    Python code (or function) when running autograd profiler. It is
    useful when tracing the code profile.

    Arguments:
        name (str): Label assigned to the block of code.
        node_id (int): ID of node, for distributed profiling. Unset in
        non-distributed cases.

    Example:
        >>> x = torch.randn((1, 1), requires_grad=True)
        >>> with torch.autograd.profiler.profile() as prof:
        ...     y = x ** 2
        ...     with torch.autograd.profiler.record_function("label-z"): # label the block
        ...         z = y ** 3
        ...     y.backward()
        ...
        >>> # NOTE: some columns were removed for brevity
        >>> print(prof.key_averages().table(sort_by="self_cpu_time_total"))
        -----------------------------------  ---------------  ---------------  ---------------
        Name                                 Self CPU total %  CPU time avg     Number of Calls
        -----------------------------------  ---------------  ---------------  ---------------
        pow                                  60.77%           47.470us         3
        mul                                  21.73%           25.465us         2
        PowBackward0                         12.03%           121.891us        1
        torch::autograd::AccumulateGrad      2.70%            6.324us          1
        label-z                              2.13%            12.421us         1
        torch::autograd::GraphRoot           0.64%            1.503us          1
        -----------------------------------  ---------------  ---------------  ---------------
        Self CPU time total: 234.344us
        CUDA time total: 0.000us

    """
    def __init__(self, name: str):
        self.name: str = name
        # Whether or not we should run record function's end callbacks when exiting.
        self.run_callbacks_on_exit: bool = True
        # Stores underlying RecordFunction as a tensor. TODO: move to custom
        # class (https://github.com/pytorch/pytorch/issues/35026).
        self.handle: torch.Tensor = torch.zeros(1)

    def __enter__(self):
        self.handle = torch.ops.profiler._record_function_enter(self.name)
        return self

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any):
        if self.run_callbacks_on_exit:
            torch.ops.profiler._record_function_exit(self.handle)

    def _call_end_callbacks_on_future(self, fut: Future[Any]) -> Future[Any]:
        """
        _call_end_callbacks_on_future is meant to be used for profiling async
        calls that return a future. Calling this function will extend recording
        beyond this scope, until the future is satisfied. It is useful for profiling
        the end to end time of asynchronous calls. This function should only be called
        once to attach the callback onto the future, and will throw if called multiple
        times.

        Arguments:
            fut: (torch._C.Future): future for which to schedule
            callback for.

        Returns:
            A future that completes with the value of the passed in future when
            the profiling callbacks have ran.

        """
        # Throw if we have already attached a callback onto the future.
        if not self.run_callbacks_on_exit:
            raise RuntimeError("_call_end_callbacks_on_future can only be called once.")

        # We are scheduling to run this RecordFunction's end callbacks when the
        # passed in future completes, so don't run end callbacks on exit.
        self.run_callbacks_on_exit = False
        profiled_future = torch.ops.profiler._call_end_callbacks_on_jit_fut(self.handle, fut)
        return profiled_future


class emit_nvtx(object):
    """Context manager that makes every autograd operation emit an NVTX range.

    It is useful when running the program under nvprof::

        nvprof --profile-from-start off -o trace_name.prof -- <regular command here>

    Unfortunately, there's no way to force nvprof to flush the data it collected
    to disk, so for CUDA profiling one has to use this context manager to annotate
    nvprof traces and wait for the process to exit before inspecting them.
    Then, either NVIDIA Visual Profiler (nvvp) can be used to visualize the timeline, or
    :func:`torch.autograd.profiler.load_nvprof` can load the results for inspection
    e.g. in Python REPL.

    .. warning:
        This context manager should not be called recursively, i.e. at most one
        instance should be enabled at any given time.

    Arguments:
        enabled (bool, optional, default=True): Setting ``enabled=False`` makes this context manager a no-op.
            Default: ``True``.
        record_shapes (bool, optional, default=False): If ``record_shapes=True``, the nvtx range wrapping
            each autograd op will append information about the sizes of Tensor arguments received
            by that op, in the following format:
            ``[[arg0.size(0), arg0.size(1), ...], [arg1.size(0), arg1.size(1), ...], ...]``
            Non-tensor arguments will be represented by ``[]``.
            Arguments will be listed in the order they are received by the backend op.
            Please note that this order may not match the order in which those arguments were passed
            on the Python side.  Also note that shape recording may increase the overhead of nvtx range creation.

    Example:
        >>> with torch.cuda.profiler.profile():
        ...     model(x) # Warmup CUDA memory allocator and profiler
        ...     with torch.autograd.profiler.emit_nvtx():
        ...         model(x)

    **Forward-backward correlation**

    When viewing a profile created using :class:`emit_nvtx` in the Nvidia Visual Profiler,
    correlating each backward-pass op with the corresponding forward-pass op can be difficult.
    To ease this task, :class:`emit_nvtx` appends sequence number information to the ranges it
    generates.

    During the forward pass, each function range is decorated with ``seq=<N>``.  ``seq`` is a running
    counter, incremented each time a new backward Function object is created and stashed for backward.
    Thus, the ``seq=<N>`` annotation associated with each forward function range tells you that
    if a backward Function object is created by this forward function,
    the backward object will receive sequence number N.
    During the backward pass, the top-level range wrapping each C++ backward Function's
    ``apply()`` call is decorated with ``stashed seq=<M>``.  ``M`` is the sequence number that
    the backward object was created with.  By comparing ``stashed seq`` numbers in backward with ``seq``
    numbers in forward, you can track down which forward op created each backward Function.

    Any functions executed during the backward pass are also decorated with ``seq=<N>``.  During
    default backward (with ``create_graph=False``) this information is irrelevant, and in fact,
    ``N`` may simply be 0 for all such functions.  Only the top-level ranges associated with
    backward Function objects' ``apply()`` methods are useful, as a way to correlate these Function
    objects with the earlier forward pass.

    **Double-backward**

    If, on the other hand, a backward pass with ``create_graph=True`` is underway (in other words,
    if you are setting up for a double-backward), each function's execution during backward
    is given a nonzero, useful ``seq=<N>``.  Those functions may themselves create Function objects
    to be executed later during double-backward, just as the original functions in the forward pass did.
    The relationship between backward and double-backward is conceptually the same as the relationship
    between forward and backward: The functions still emit current-sequence-number-tagged ranges,
    the Function objects they create still stash those sequence numbers, and during the eventual
    double-backward, the Function objects' ``apply()`` ranges are still tagged with ``stashed seq``
    numbers, which can be compared to `seq` numbers from the backward pass.

    .. warning:
        The sequence number is thread-local, and some forward functions don't create an associated
        backward Function object (instead delegating that to sub-functions further down the call chain).
        For these reasons, the correspondence of stashed sequence numbers in
        backward Function ``apply()`` ranges with `seq` numbers in forward-pass ranges is
        not guaranteed to be 1 to 1.  The sequence numbers alone may not be enough to fully
        disambiguate which forward function created which
        backward Function object.  You may need to make a judgment based on analytic knowledge of what
        the expected correspondence should be.
    """
    def __init__(self, enabled=True, record_shapes=False):
        self.enabled = enabled
        self.entered = False
        self.record_shapes = record_shapes

    def __enter__(self):
        if not self.enabled:
            return
        if self.entered:
            raise RuntimeError("NVTX annotation context manager is not reentrant")
        self.entered = True
        torch.cuda.synchronize()
        torch.autograd._enable_profiler(
            torch.autograd.ProfilerConfig(
                torch.autograd.ProfilerState.NVTX,
                self.record_shapes,
                False,
                False)
        )
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.enabled:
            return
        torch.cuda.synchronize()
        torch.autograd._disable_profiler()
        return False


def load_nvprof(path):
    """Opens an nvprof trace file and parses autograd annotations.

    Arguments:
        path (str): path to nvprof trace
    """
    return EventList(parse_nvprof_trace(path))


################################################################################
# FunctionEvent

def format_time(time_us):
    """Defines how to format time in FunctionEvent"""
    US_IN_SECOND = 1000.0 * 1000.0
    US_IN_MS = 1000.0
    if time_us >= US_IN_SECOND:
        return '{:.3f}s'.format(time_us / US_IN_SECOND)
    if time_us >= US_IN_MS:
        return '{:.3f}ms'.format(time_us / US_IN_MS)
    return '{:.3f}us'.format(time_us)


def format_time_share(time_us, total_time_us):
    """Defines how to format time in FunctionEvent"""
    if total_time_us == 0:
        assert time_us == 0, "Expected time_us == 0 but got {}".format(time_us)
        return "NaN"
    return '{:.2f}%'.format(time_us * 100.0 / total_time_us)

def format_memory(nbytes):
    """Returns a formatted memory size string"""
    KB = 1024
    MB = 1024 * KB
    GB = 1024 * MB
    if (abs(nbytes) >= GB):
        return '{:.2f} Gb'.format(nbytes * 1.0 / GB)
    elif (abs(nbytes) >= MB):
        return '{:.2f} Mb'.format(nbytes * 1.0 / MB)
    elif (abs(nbytes) >= KB):
        return '{:.2f} Kb'.format(nbytes * 1.0 / KB)
    else:
        return str(nbytes) + ' b'

def attr_formatter(name):
    return property(lambda self: format_time(getattr(self, name)))


class FormattedTimesMixin(object):
    """Helpers for FunctionEvent and FunctionEventAvg.

    The subclass should define `*_time_total` and `count` attributes.
    """
    cpu_time_str = attr_formatter('cpu_time')
    cuda_time_str = attr_formatter('cuda_time')
    cpu_time_total_str = attr_formatter('cpu_time_total')
    cuda_time_total_str = attr_formatter('cuda_time_total')
    self_cpu_time_total_str = attr_formatter('self_cpu_time_total')
    self_cuda_time_total_str = attr_formatter('self_cuda_time_total')

    @property
    def cpu_time(self):
        return 0.0 if self.count == 0 else 1.0 * self.cpu_time_total / self.count  # type: ignore

    @property
    def cuda_time(self):
        return 0.0 if self.count == 0 else 1.0 * self.cuda_time_total / self.count  # type: ignore


class Interval(object):
    def __init__(self, start, end):
        self.start = start
        self.end = end

    def elapsed_us(self):
        return self.end - self.start


Kernel = namedtuple('Kernel', ['name', 'device', 'interval'])


class FunctionEvent(FormattedTimesMixin):
    """Profiling information about a single function."""
    def __init__(
            self, id, node_id, name, thread, cpu_start, cpu_end, fwd_thread=None, input_shapes=None,
            stack=None, scope=0, cpu_memory_usage=0, cuda_memory_usage=0, is_async=False,
            is_remote=True, sequence_nr=-1):
        self.id: int = id
        self.node_id: int = node_id
        self.name: str = name
        self.cpu_interval: Interval = Interval(cpu_start, cpu_end)
        self.thread: int = thread
        self.fwd_thread: Optional[int] = fwd_thread
        self.kernels: List[Kernel] = []
        self.count: int = 1
        self.cpu_children: List[FunctionEvent] = []
        self.cpu_parent: Optional[FunctionEvent] = None
        self.input_shapes: Tuple[int, ...] = input_shapes
        self.stack: List = stack
        self.scope: int = scope
        self.cpu_memory_usage: int = cpu_memory_usage
        self.cuda_memory_usage: int = cuda_memory_usage
        self.is_async: bool = is_async
        self.is_remote: bool = is_remote
        self.sequence_nr: int = sequence_nr

    def append_kernel(self, name, device, start, end):
        self.kernels.append(Kernel(name, device, Interval(start, end)))

    def append_cpu_child(self, child):
        """Append a CPU child of type FunctionEvent.

        One is supposed to append only direct children to the event to have
        correct self cpu time being reported.
        """
        assert(isinstance(child, FunctionEvent))
        self.cpu_children.append(child)

    def set_cpu_parent(self, parent):
        """Set the immediate CPU parent of type FunctionEvent

        One profiling FunctionEvent should have only one CPU parent such that
        the child's range interval is completely inside the parent's. We use
        this connection to determine the event is from top-level op or not.
        """
        assert(isinstance(parent, FunctionEvent))
        self.cpu_parent = parent

    # Note: async events don't have children, are not used when computing 'self'
    # metrics of other events, have only total cpu time
    @property
    def self_cpu_memory_usage(self):
        if self.is_async:
            return 0
        return self.cpu_memory_usage - sum(
            [child.cpu_memory_usage for child in self.cpu_children]
        )

    @property
    def self_cuda_memory_usage(self):
        if self.is_async:
            return 0
        return self.cuda_memory_usage - sum(
            [child.cuda_memory_usage for child in self.cpu_children]
        )

    @property
    def self_cpu_time_total(self):
        if self.is_async:
            return 0
        return self.cpu_time_total - sum(
            [child.cpu_time_total for child in self.cpu_children]
        )

    @property
    def cuda_time_total(self):
        return sum(kinfo.interval.elapsed_us() for kinfo in self.kernels)

    @property
    def self_cuda_time_total(self):
        return sum(kinfo.interval.elapsed_us() for kinfo in self.kernels) - \
            sum([child.cuda_time_total for child in self.cpu_children])

    @property
    def cpu_time_total(self):
        return self.cpu_interval.elapsed_us()

    @property
    def key(self):
        return self.name

    def __repr__(self):
        return (
            '<FunctionEvent id={} node_id={} cpu_time={} cpu_start={} cpu_end={} '
            'cpu_children={} cuda_time={} name={} thread={} input_shapes={} '
            'cpu_memory_usage={} cuda_memory_usage={} is_async={} is_remote={} seq_nr={}>'.format(
                self.id,
                self.node_id,
                self.cpu_time_str,
                self.cpu_interval.start,
                self.cpu_interval.end,
                str([child.id for child in self.cpu_children]),
                self.cuda_time_str,
                self.name,
                self.thread,
                str(self.input_shapes),
                self.cpu_memory_usage,
                self.cuda_memory_usage,
                self.is_async,
                self.is_remote,
                self.sequence_nr,
            )
        )


class FunctionEventAvg(FormattedTimesMixin):
    """Used to average stats over multiple FunctionEvent objects."""
    def __init__(self):
        self.key: Optional[str] = None
        self.count: int = 0
        self.node_id: int = 0
        self.is_async: bool = False
        self.is_remote: bool = False
        self.cpu_time_total: int = 0
        self.cuda_time_total: int = 0
        self.self_cpu_time_total: int = 0
        self.self_cuda_time_total: int = 0
        self.input_shapes: Optional[List[List[int]]] = None
        self.stack: Optional[List] = None
        self.scope: Optional[int] = None
        self.cpu_memory_usage: int = 0
        self.cuda_memory_usage: int = 0
        self.self_cpu_memory_usage: int = 0
        self.self_cuda_memory_usage: int = 0
        self.cpu_children: Optional[List[FunctionEvent]] = None
        self.cpu_parent: Optional[FunctionEvent] = None

    def add(self, other):
        if self.key is None:
            # First function being recorded as part of FunctionEventAvg, propagate
            # fields.
            self.key = other.key
            self.node_id = other.node_id
            self.is_async = other.is_async
            self.is_remote = other.is_remote
            self.cpu_parent = other.cpu_parent
            self.cpu_children = other.cpu_children

            self.input_shapes = other.input_shapes
            self.stack = other.stack
            self.scope = other.scope

        assert isinstance(other, (FunctionEvent, FunctionEventAvg))
        assert other.key == self.key
        self.cpu_time_total += other.cpu_time_total
        self.cuda_time_total += other.cuda_time_total
        self.self_cpu_time_total += other.self_cpu_time_total
        self.self_cuda_time_total += other.self_cuda_time_total
        self.cpu_memory_usage += other.cpu_memory_usage
        self.cuda_memory_usage += other.cuda_memory_usage
        self.self_cpu_memory_usage += other.self_cpu_memory_usage
        self.self_cuda_memory_usage += other.self_cuda_memory_usage
        self.count += other.count
        return self

    def __iadd__(self, other):
        return self.add(other)

    def __repr__(self):
        return (
            '<FunctionEventAvg key={} self_cpu_time={} cpu_time={} '
            ' self_cuda_time={} cuda_time={} input_shapes={} '
            'cpu_memory_usage={} cuda_memory_usage={}>'.format(
                self.key,
                self.self_cpu_time_total_str,
                self.cpu_time_str,
                self.self_cuda_time_total_str,
                self.cuda_time_str,
                str(self.input_shapes),
                self.cpu_memory_usage,
                self.cuda_memory_usage,
            )
        )


################################################################################
# Utilities

class StringTable(defaultdict):
    def __missing__(self, key):
        # manage cases like 't' (demangled to 'unsigned short') separately,
        # for now simply check the length to avoid unexpected results for
        # the short sequences
        self[key] = torch._C._demangle(key) if len(key) > 1 else key
        return self[key]

def parse_event_records(thread_records):
    def get_record_key(record):
        """
        Returns a tuple to be used by parse_event_records for correlating start and
        end records.
        """
        return (record.handle(), record.node_id())

    next_id = 0
    start_record = None
    cuda_records = {}
    functions = []
    record_stack = []
    string_table = StringTable()

    # ignoring the following utility ops
    filtered_out_names = [
        "profiler::_record_function_enter",
        "profiler::_record_function_exit",
        "aten::is_leaf",
        "aten::output_nr",
        "aten::_version",
    ]

    def filter_stack_entry(entry):
        filtered_entries = [
            ("autograd/__init__", "_make_grads"),
            ("autograd/__init__", "backward"),
            ("torch/tensor", "backward"),
            ("_internal/common_utils", "prof_callable"),
            ("_internal/common_utils", "prof_func_call"),
            ("_internal/common_utils", "prof_meth_call"),
        ]
        return all([not (f[0] in entry and f[1] in entry) for f in filtered_entries])

    # cuda start events and the overall profiler start event don't happen
    # at exactly the same time because we need to record an event on each device
    # and each record takes ~4us. So we adjust here by the difference
    # adding the difference in CPU time between the profiler start event
    # and the CPU time of the cuda start event for the device
    def adjusted_time(cuda_record, cuda_records_map):
        assert cuda_record.device() != -1
        assert start_record is not None
        cuda_time_0 = cuda_records_map[(cuda_record.node_id(), cuda_record.device())]
        return cuda_time_0.cuda_elapsed_us(cuda_record) + start_record.cpu_elapsed_us(cuda_time_0)

    # '__start_profile' is not guaranteed to be first, so we must find it here
    for record in itertools.chain(*thread_records):
        name = record.name()
        if start_record is None and name == '__start_profile':
            start_record = record
        elif '__cuda_start_event' in name:
            # N.B.: Each CUDA device has its own __cuda_start_event.
            assert record.device() != -1
            # key for cuda_records is (node_id, device) in case of multiple nodes
            # having the same device
            cuda_records[(record.node_id(), record.device())] = record

    assert start_record is not None and not start_record.is_remote()

    for thread_record_list in thread_records:
        # accumulated memory allocations per handle
        cpu_memory_allocs = {}
        cuda_memory_allocs = {}
        # ranges per handle
        range_starts = {}

        filtered_handles = set()
        prev_record = None
        for record in thread_record_list:
            record_key = get_record_key(record)
            if (record.name() in filtered_out_names or
                    record_key in filtered_handles):
                filtered_handles.add(record_key)
                continue

            if record.kind() == 'push':
                # workaround to reduce double logging from operator
                # wrappers and redispatch
                if prev_record is not None:
                    duplicate = (
                        prev_record.name() == record.name()
                        and prev_record.kind() == record.kind()
                        and prev_record.node_id() == record.node_id()
                    )
                    if duplicate:
                        filtered_handles.add(record_key)
                        continue

                range_starts[record_key] = record
                cpu_memory_allocs[record_key] = 0
                cuda_memory_allocs[record_key] = 0
            elif record.kind() == 'pop':
                assert (
                    record_key in range_starts
                ), """Expected record with key {} to exist in range_starts.
                    This means that the pop event did not have a corresponding push.""".format(
                    record_key
                )

                start = range_starts[record_key]

                cpu_memory_usage = cpu_memory_allocs[record_key]
                cuda_memory_usage = cuda_memory_allocs[record_key]
                is_async = start.thread_id() != record.thread_id()
                is_remote_event = record.is_remote()

                fe = FunctionEvent(
                    id=record.handle(),
                    node_id=record.node_id(),
                    name=string_table[start.name()],
                    thread=start.thread_id(),
                    cpu_start=start_record.cpu_elapsed_us(start),
                    cpu_end=start_record.cpu_elapsed_us(record),
                    fwd_thread=start.fwd_thread_id(),
                    input_shapes=start.shapes(),
                    stack=[entry for entry in start.stack() if filter_stack_entry(entry)],
                    scope=start.scope(),
                    cpu_memory_usage=cpu_memory_usage,
                    cuda_memory_usage=cuda_memory_usage,
                    is_async=is_async,
                    is_remote=is_remote_event,
                    sequence_nr=start.sequence_nr(),
                )
                # note: async events have only cpu total time
                if not is_async and start.has_cuda():
                    cuda_start = adjusted_time(start, cuda_records)
                    cuda_end = adjusted_time(record, cuda_records)
                    if (cuda_end - cuda_start) > 0:
                        fe.append_kernel(
                            start.name(),
                            start.device(),
                            cuda_start,
                            cuda_end)
                functions.append(fe)
                del range_starts[record_key]
                del cpu_memory_allocs[record_key]
                del cuda_memory_allocs[record_key]
            elif record.kind() == 'memory_alloc':
                for handle in cpu_memory_allocs.keys():
                    cpu_memory_allocs[handle] += record.cpu_memory_usage()
                for handle in cuda_memory_allocs.keys():
                    cuda_memory_allocs[handle] += record.cuda_memory_usage()
            prev_record = record

    # Sort functions by start time then by end time ascending.
    # This ensures that--in the case of nested events which
    # have the same start time (which may happen due to the
    # granularity of the given clock tick)--we always show
    # the outermost nested call first. This adds stability
    # in how FunctionEvents appear
    functions.sort(key=lambda evt: [evt.cpu_interval.start, -evt.cpu_interval.end])
    return functions


################################################################################
# CUDA checkpoints

class EnforceUnique(object):
    """Raises an error if a key is seen more than once."""
    def __init__(self):
        self.seen = set()

    def see(self, *key):
        if key in self.seen:
            raise RuntimeError('duplicate key: ' + str(key))
        self.seen.add(key)


def parse_nvprof_trace(path):
    import sqlite3
    conn = sqlite3.connect(path)
    conn.row_factory = sqlite3.Row

    # Parse strings table
    strings = {}
    for r in conn.execute("SELECT _id_ as id, value FROM StringTable"):
        strings[r["id"]] = torch._C._demangle(r["value"])

    # First, find all functions and create FunctionEvents for them
    marker_query = """
    SELECT
        start.id AS marker_id, start.name, start.timestamp AS start_time, end.timestamp AS end_time
    FROM
        CUPTI_ACTIVITY_KIND_MARKER AS start INNER JOIN CUPTI_ACTIVITY_KIND_MARKER AS end
        ON start.id = end.id
    WHERE
        start.name != 0 AND end.name = 0
    """
    functions = []
    functions_map = {}
    unique = EnforceUnique()
    for row in conn.execute(marker_query):
        unique.see(row['marker_id'])
        evt = FunctionEvent(id=row['marker_id'],
                            node_id=0,  # missing a node_id when calling FunctionEvent. This is just to ensure
                                        # that pytorch doesn't crash when creating a FunctionEvent() object
                            name=strings[row['name']],
                            cpu_start=row['start_time'],
                            cpu_end=row['end_time'],
                            thread=0)  # TODO: find in sqlite database
        functions.append(evt)
        functions_map[evt.id] = evt

    # Now, correlate all kernels with FunctionEvents
    kernel_query = """
    SELECT
        start.id AS marker_id, start.name, start.timestamp, end.timestamp,
        runtime._id_ AS runtime_id, runtime.cbid, runtime.start AS runtime_start, runtime.end AS runtime_end,
        kernel.start AS kernel_start, kernel.end AS kernel_end, kernel.name AS kernel_name
    FROM
        CUPTI_ACTIVITY_KIND_MARKER AS start
        INNER JOIN CUPTI_ACTIVITY_KIND_MARKER AS end
            ON start.id = end.id
        INNER JOIN CUPTI_ACTIVITY_KIND_RUNTIME as runtime
            ON (start.timestamp < runtime.start AND runtime.end < end.timestamp)
        INNER JOIN CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL AS kernel
            ON kernel.correlationId = runtime.correlationId
    """
    unique = EnforceUnique()
    for row in conn.execute(kernel_query):
        unique.see(row['marker_id'], row['runtime_id'])
        # 211 is cudaKernelLaunch for cuda >= 9.2; 13 is for older cuda versions
        assert (row['cbid'] == 211) or (row['cbid'] == 13)
        evt = functions_map[row['marker_id']]
        evt.append_kernel(row['kernel_name'],
                          0,
                          row['kernel_start'],
                          row['kernel_end'])

    functions.sort(key=lambda evt: evt.cpu_interval.start)
    return functions


################################################################################
# Pretty printer


def build_table(
        events,
        sort_by=None,
        header=None,
        row_limit=100,
        use_cuda=True,
        profile_memory=False,
        top_level_events_only=False):
    """Prints a summary of events (which can be a list of FunctionEvent or FunctionEventAvg)."""
    if len(events) == 0:
        return ""

    if sort_by is not None:
        events = EventList(sorted(
            events, key=lambda evt: getattr(evt, sort_by), reverse=True
        ), use_cuda=use_cuda, profile_memory=profile_memory)

    has_input_shapes = any(
        [(event.input_shapes is not None and len(event.input_shapes) > 0) for event in events])

    name_column_width = max([len(evt.key) for evt in events]) + 4

    DEFAULT_COLUMN_WIDTH = 12

    shapes_column_width = max([len(str(evt.input_shapes)) for evt in events]) + 4
    shapes_column_width = min(shapes_column_width, 45)

    src_column_width = None
    stacks = []
    for evt in events:
        if evt.stack is not None and len(evt.stack) > 0:
            stacks.append(evt.stack)
    has_stack = len(stacks) > 0
    if has_stack:
        src_column_width = max([max([len(entry) for entry in stack]) for stack in stacks]) + 4
        src_column_width = min(src_column_width, 75)

    headers = [
        'Name',
        'Self CPU %',
        'Self CPU',
        'CPU total %',
        'CPU total',
        'CPU time avg',
    ]
    if use_cuda:
        headers.extend([
            'Self CUDA',
            'Self CUDA %',
            'CUDA total',
            'CUDA time avg',
        ])
    if profile_memory:
        headers.extend([
            'CPU Mem',
            'Self CPU Mem',
        ])
        if torch.cuda.is_available():
            headers.extend([
                'CUDA Mem',
                'Self CUDA Mem',
            ])
    headers.append(
        '# of Calls'
    )
    # Only append Node ID if any event has a valid (>= 0) Node ID
    append_node_id = any([evt.node_id != -1 for evt in events])
    if append_node_id:
        headers.append('Node ID')

    # Have to use a list because nonlocal is Py3 only...
    SPACING_SIZE = 2
    row_format_lst = [""]
    header_sep_lst = [""]
    line_length_lst = [-SPACING_SIZE]
    MAX_STACK_ENTRY = 5

    def add_column(padding, text_dir='>'):
        row_format_lst[0] += '{: ' + text_dir + str(padding) + '}' + (' ' * SPACING_SIZE)
        header_sep_lst[0] += '-' * padding + (' ' * SPACING_SIZE)
        line_length_lst[0] += padding + SPACING_SIZE

    add_column(name_column_width)
    for _ in headers[1:]:
        add_column(DEFAULT_COLUMN_WIDTH)

    if has_input_shapes:
        headers.append('Input Shapes')
        add_column(shapes_column_width)

    if has_stack:
        headers.append('Source Location')
        add_column(src_column_width, text_dir='<')

    row_format = row_format_lst[0]
    header_sep = header_sep_lst[0]
    line_length = line_length_lst[0]
    add_column = None  # type: ignore

    # Have to use a list because nonlocal is Py3 only...
    result = []

    def append(s):
        result.append(s)
        result.append('\n')  # Yes, newline after the end as well

    self_cpu_time_total = sum([event.self_cpu_time_total for event in events])
    cuda_time_total = sum([evt.self_cuda_time_total for evt in events])
    # Actual printing
    if header is not None:
        append('=' * line_length)
        append(header)
    if top_level_events_only:
        append('=' * line_length)
        append('This report only display top-level ops statistics')
    append(header_sep)
    append(row_format.format(*headers))

    append(header_sep)

    event_limit = 0
    for evt in events:
        if event_limit == row_limit:
            break
        if top_level_events_only and evt.cpu_parent is not None:
            continue
        else:
            event_limit += 1
        row_values = [
            evt.key,  # Name
            # Self CPU total, 0 for async events. %
            format_time_share(evt.self_cpu_time_total,
                              self_cpu_time_total),
            evt.self_cpu_time_total_str,  # Self CPU total
            # CPU total %, 0 for async events.
            format_time_share(evt.cpu_time_total, self_cpu_time_total) if not evt.is_async else 0,
            evt.cpu_time_total_str,  # CPU total
            evt.cpu_time_str,  # CPU time avg
        ]
        if use_cuda:
            row_values.extend([
                evt.self_cuda_time_total_str,
                # CUDA time total %
                format_time_share(evt.self_cuda_time_total, cuda_time_total),
                evt.cuda_time_total_str,
                evt.cuda_time_str,  # Cuda time avg
            ])
        if profile_memory:
            row_values.extend([
                # CPU Mem Total
                format_memory(evt.cpu_memory_usage),
                # Self CPU Mem Total
                format_memory(evt.self_cpu_memory_usage),
            ])
            if torch.cuda.is_available():
                row_values.extend([
                    # CUDA Mem Total
                    format_memory(evt.cuda_memory_usage),
                    # Self CUDA Mem Total
                    format_memory(evt.self_cuda_memory_usage),
                ])
        row_values.append(
            evt.count,  # Number of calls
        )

        if append_node_id:
            row_values.append(evt.node_id)
        if has_input_shapes:
            row_values.append(str(evt.input_shapes)[:shapes_column_width])
        if has_stack:
            src_field = ""
            if len(evt.stack) > 0:
                src_field = evt.stack[0][:src_column_width]
            row_values.append(src_field)
        append(row_format.format(*row_values))

        if has_stack:
            empty_headers = [""] * (len(headers) - 1)
            for entry in evt.stack[1:MAX_STACK_ENTRY]:
                append(row_format.format(*(empty_headers + [entry[:src_column_width]])))
            empty_headers.append("")
            append(row_format.format(*empty_headers))

    append(header_sep)
    append("Self CPU time total: {}".format(format_time(self_cpu_time_total)))
    if use_cuda:
        append("CUDA time total: {}".format(format_time(cuda_time_total)))
    return ''.join(result)