1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
|
#include <torch/csrc/python_headers.h>
#include <sys/types.h>
#ifndef _MSC_VER
#include <sys/socket.h>
#endif
#include <unordered_map>
#include <cstdlib>
#include <libshm.h>
#include <TH/TH.h>
#include <c10/util/Logging.h>
#include <ATen/ATen.h>
#include <ATen/ExpandUtils.h>
#include <ATen/dlpack.h>
#include <ATen/DLConvertor.h>
#include <ATen/Parallel.h>
#include <ATen/Utils.h>
#include <ATen/VmapMode.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <torch/csrc/THP.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/DataLoader.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/TypeInfo.h>
#include <torch/csrc/autograd/python_nn_functions.h>
#include <torch/csrc/autograd/python_fft_functions.h>
#include <torch/csrc/autograd/python_linalg_functions.h>
#include <torch/csrc/autograd/python_legacy_variable.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/multiprocessing/init.h>
#include <torch/csrc/tensor/python_tensor.h>
#include <torch/csrc/utils/disable_torch_function.h>
#include <torch/csrc/utils/tensor_dtypes.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/tensor_layouts.h>
#include <torch/csrc/utils/tensor_memoryformats.h>
#include <torch/csrc/utils/tensor_qschemes.h>
#include <torch/csrc/utils/tensor_numpy.h>
#include <torch/csrc/utils/python_dispatch.h>
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/jit/python/init.h>
#include <torch/csrc/jit/python/python_ir.h>
#include <torch/csrc/onnx/init.h>
#include <torch/csrc/utils/init.h>
#include <torch/csrc/api/include/torch/python/init.h>
#ifdef USE_DISTRIBUTED
#ifdef USE_C10D
#include <torch/csrc/distributed/autograd/python_autograd.h>
#include <torch/csrc/distributed/c10d/c10d.h>
#include <torch/csrc/distributed/rpc/rpc.h>
#include <torch/csrc/distributed/rpc/testing/testing.h>
#endif
#endif
#if (defined(_WIN32) || defined(_WIN64) || defined(FBCODE_CAFFE2) || defined(C10_MOBILE))
#define NVALGRIND
#else
#include <callgrind.h>
#endif
#define WITH_NUMPY_IMPORT_ARRAY
#include <torch/csrc/utils/numpy_stub.h>
namespace py = pybind11;
PyObject* module;
THPGenerator *THPDefaultCPUGenerator = nullptr;
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
static PyObject * THPModule_initNames(PyObject *self, PyObject *arg)
{
static std::vector<std::string> names;
THPObjectPtr types(PySequence_Fast(arg, "expected a sequence"));
if (!types) return nullptr;
int num_classes = PySequence_Fast_GET_SIZE(types.get());
names.reserve(names.size() + num_classes);
for (size_t i = 0; i < num_classes; i++) {
PyObject* obj = PySequence_Fast_GET_ITEM(types.get(), i);
THPUtils_assert(PyType_Check(obj), "expected a PyTypeObject");
PyTypeObject* type = (PyTypeObject*)obj;
THPObjectPtr module_name(PyObject_GetAttrString(obj, "__module__"));
if (!module_name) return nullptr;
THPUtils_assert(THPUtils_checkString(module_name.get()),
"expected __module__ to be a string");
std::string name = THPUtils_unpackString(module_name.get());
names.push_back(name + "." + type->tp_name);
type->tp_name = names.back().c_str();
}
Py_RETURN_NONE;
}
//
// Callback for python part. Used for additional initialization of python classes
static PyObject * THPModule_initExtension(PyObject *_unused, PyObject *shm_manager_path)
{
HANDLE_TH_ERRORS
if (!THPUtils_checkString(shm_manager_path)) {
THPUtils_setError("initialization error - expected bytes/string object as shm_manager_path!");
return nullptr;
}
torch::utils::initializeLayouts();
torch::utils::initializeMemoryFormats();
torch::utils::initializeQSchemes();
torch::utils::initializeDtypes();
torch::tensors::initialize_python_bindings();
std::string path = THPUtils_unpackString(shm_manager_path);
libshm_init(path.c_str());
auto module = THPObjectPtr(PyImport_ImportModule("torch"));
if (!module) throw python_error();
THPDoubleStorage_postInit(module);
THPFloatStorage_postInit(module);
THPHalfStorage_postInit(module);
THPLongStorage_postInit(module);
THPIntStorage_postInit(module);
THPShortStorage_postInit(module);
THPCharStorage_postInit(module);
THPByteStorage_postInit(module);
THPBoolStorage_postInit(module);
THPQUInt8Storage_postInit(module);
THPQInt8Storage_postInit(module);
THPQInt32Storage_postInit(module);
THPBFloat16Storage_postInit(module);
THPComplexDoubleStorage_postInit(module);
THPComplexFloatStorage_postInit(module);
THPAutograd_initFunctions();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// The idea behind these two functions is to make it easy to test if we are
// built with ASAN: they're designed not to crash if ASAN is not enabled, but
// to trigger ASAN if it is enabled. This lets us run a "canary" tests which
// checks if our build environment is misconfigured.
static PyObject * THPModule_crashIfCsrcASAN(PyObject *module, PyObject *arg) {
THPUtils_assert(THPUtils_checkLong(arg), "crash_if_csrc_asan expects an int, "
"but got %s", THPUtils_typename(arg));
//NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays, modernize-avoid-c-arrays)
volatile char x[3];
x[static_cast<int>(THPUtils_unpackLong(arg))] = 0;
return PyLong_FromLong(x[0]);
}
static PyObject * THPModule_crashIfCsrcUBSAN(PyObject *module, PyObject *arg) {
THPUtils_assert(THPUtils_checkLong(arg), "crash_if_csrc_ubsan expects an int, "
"but got %s", THPUtils_typename(arg));
int32_t x = static_cast<int>(THPUtils_unpackLong(arg));
double y = 1.0 / x;
return PyLong_FromLong((int)y);
}
static PyObject * THPModule_crashIfATenASAN(PyObject *module, PyObject *arg) {
THPUtils_assert(THPUtils_checkLong(arg), "crash_if_aten_asan expects an int, "
"but got %s", THPUtils_typename(arg));
return PyLong_FromLong(at::_crash_if_asan(static_cast<int>(THPUtils_unpackLong(arg))));
}
static PyObject * THPModule_getNumThreads(PyObject *module, PyObject *noargs)
{
return PyLong_FromLong(at::get_num_threads());
}
static PyObject * THPModule_setNumThreads(PyObject *module, PyObject *arg)
{
THPUtils_assert(THPUtils_checkLong(arg), "set_num_threads expects an int, "
"but got %s", THPUtils_typename(arg));
int nthreads = (int)THPUtils_unpackLong(arg);
THPUtils_assert(nthreads > 0, "set_num_threads expects a positive integer");
at::set_num_threads(nthreads);
Py_RETURN_NONE;
}
static PyObject * THPModule_getNumInteropThreads(PyObject *module, PyObject *noargs)
{
return PyLong_FromLong(at::get_num_interop_threads());
}
static PyObject * THPModule_setNumInteropThreads(PyObject *module, PyObject *arg)
{
THPUtils_assert(THPUtils_checkLong(arg), "set_num_interop_threads expects an int, "
"but got %s", THPUtils_typename(arg));
int nthreads = (int)THPUtils_unpackLong(arg);
THPUtils_assert(nthreads > 0, "set_num_interop_threads expects a positive integer");
at::set_num_interop_threads(nthreads);
Py_RETURN_NONE;
}
PyObject * THPModule_setDefaultTensorType(PyObject *_unused, PyObject *type)
{
HANDLE_TH_ERRORS
torch::tensors::py_set_default_tensor_type(type);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THPModule_setDefaultDtype(PyObject *_unused, PyObject *dtype)
{
HANDLE_TH_ERRORS
torch::tensors::py_set_default_dtype(dtype);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject *THPModule_addDocStr(PyObject *_unused, PyObject *args)
{
// adds a __doc__ string to a function, similar to numpy's arr_add_docstring
static std::vector<std::string> all_docs;
PyObject *obj;
PyObject *doc_obj;
if (!PyArg_ParseTuple(args, "OO", &obj, &doc_obj)) {
return nullptr;
}
const char* doc_str = "<invalid string>";
if (THPUtils_checkString(doc_obj)) {
all_docs.push_back(THPUtils_unpackString(doc_obj));
doc_str = all_docs.back().c_str();
}
if (Py_TYPE(obj) == &PyCFunction_Type) {
PyCFunctionObject* f = (PyCFunctionObject *)obj;
if (f->m_ml->ml_doc) {
return PyErr_Format(PyExc_RuntimeError,
"function '%s' already has a docstring", f->m_ml->ml_name);
}
f->m_ml->ml_doc = doc_str;
} else if (strcmp(Py_TYPE(obj)->tp_name, "method_descriptor") == 0) {
PyMethodDescrObject* m = (PyMethodDescrObject *)obj;
if (m->d_method->ml_doc) {
return PyErr_Format(PyExc_RuntimeError,
"method '%s' already has a docstring", m->d_method->ml_name);
}
m->d_method->ml_doc = doc_str;
} else if (strcmp(Py_TYPE(obj)->tp_name, "getset_descriptor") == 0) {
//NOLINTNEXTLINE(cppcoreguidelines-pro-type-cstyle-cast)
PyGetSetDescrObject* m = (PyGetSetDescrObject *)obj;
if (m->d_getset->doc) {
//NOLINTNEXTLINE(cppcoreguidelines-pro-type-vararg)
return PyErr_Format(PyExc_RuntimeError,
"attribute '%s' already has a docstring", m->d_getset->name);
}
// This field is not const for python < 3.7 yet the content is
// never modified.
//NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
m->d_getset->doc = const_cast<char *>(doc_str);
} else if (Py_TYPE(obj) == &PyType_Type) {
PyTypeObject* t = (PyTypeObject *)obj;
if (t->tp_doc) {
return PyErr_Format(PyExc_RuntimeError,
"Type '%s' already has a docstring", t->tp_name);
}
t->tp_doc = doc_str;
} else {
return PyErr_Format(PyExc_TypeError,
"don't know how to add docstring to type '%s'", Py_TYPE(obj)->tp_name);
}
Py_INCREF(obj);
return obj;
}
PyObject *THPModule_inferSize(PyObject *_unused, PyObject *args)
{
HANDLE_TH_ERRORS
Py_ssize_t num_args = args ? (Py_ssize_t) PyTuple_Size(args) : 0;
THPUtils_assert(num_args == 2, "expected exactly 2 arguments");
PyObject *arg1 = PyTuple_GET_ITEM(args, 0);
THPUtils_assert(THPSize_Check(arg1), "expected a torch.Size as argument 1");
PyObject *arg2 = PyTuple_GET_ITEM(args, 1);
THPUtils_assert(THPSize_Check(arg2), "expected a torch.Size as argument 2");
auto size1 = THPUtils_unpackLongs(arg1);
auto size2 = THPUtils_unpackLongs(arg2);
auto sizes = at::infer_size(size1, size2);
return THPSize_NewFromSizes(sizes.size(), sizes.data());
END_HANDLE_TH_ERRORS
}
static PyObject *THPModule_setBackcompatBroadcastWarn(PyObject *module, PyObject *arg) {
THPUtils_assert(PyBool_Check(arg), "set_backcompat_broadcast_warn expects a bool, "
"but got %s", THPUtils_typename(arg));
setBackCompatBroadcastWarn(arg == Py_True);
Py_RETURN_NONE;
}
static PyObject *THPModule_getBackcompatBroadcastWarn(PyObject *module, PyObject *noargs)
{
if (getBackCompatBroadcastWarn()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
static PyObject *THPModule_setBackcompatKeepdimWarn(PyObject *module, PyObject *arg) {
THPUtils_assert(PyBool_Check(arg), "set_backcompat_keepdim_warn expects a bool, "
"but got %s", THPUtils_typename(arg));
setBackCompatKeepdimWarn(arg == Py_True);
Py_RETURN_NONE;
}
static PyObject *THPModule_getBackcompatKeepdimWarn(PyObject *module, PyObject *noargs)
{
if (getBackCompatKeepdimWarn()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_hasDistributed(PyObject *_unused, PyObject *noargs)
{
#ifdef USE_DISTRIBUTED
Py_RETURN_TRUE;
#else
Py_RETURN_FALSE;
#endif
}
static PyObject *THPModule_showConfig(PyObject *module, PyObject *noargs)
{
HANDLE_TH_ERRORS
return THPUtils_packString(at::show_config());
END_HANDLE_TH_ERRORS
}
static PyObject *THPModule_parallelInfo(PyObject *module, PyObject *noargs)
{
HANDLE_TH_ERRORS
return THPUtils_packString(at::get_parallel_info());
END_HANDLE_TH_ERRORS
}
void DLPack_Capsule_Destructor(PyObject* data) {
HANDLE_TH_ERRORS
DLManagedTensor * dlMTensor = (DLManagedTensor *)PyCapsule_GetPointer(data, "dltensor");
if (dlMTensor) {
// the dlMTensor has not been consumed, call deleter ourselves
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
dlMTensor->deleter(const_cast<DLManagedTensor*>(dlMTensor));
} else {
// the dlMTensor has been consumed
// PyCapsule_GetPointer has set an error indicator
PyErr_Clear();
}
END_HANDLE_TH_ERRORS_RET()
}
PyObject *THPModule_toDLPack(PyObject *_unused, PyObject *data)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPVariable_Check(data), "data must be a Tensor");
DLManagedTensor* dlMTensor = at::toDLPack(THPVariable_Unpack(data));
return PyCapsule_New(dlMTensor, "dltensor", DLPack_Capsule_Destructor);
END_HANDLE_TH_ERRORS
}
PyObject *THPModule_fromDLPack(PyObject *_unused, PyObject *data)
{
using namespace torch::autograd;
HANDLE_TH_ERRORS
DLManagedTensor * dlMTensor = (DLManagedTensor *)PyCapsule_GetPointer(data, "dltensor");
THPUtils_assert(dlMTensor, "from_dlpack received an invalid capsule. "
"Note that DLTensor capsules can be consumed only once, "
"so you might have already constructed a tensor from it once.")
// atensor steals the ownership of the underlying storage. It also passes a
// destructor function that will be called when the underlying storage goes
// out of scope. When the destructor is called, the dlMTensor is destructed too.
auto atensor = at::fromDLPack(dlMTensor);
// It is possible that the call to at::fromDLPack is the very first
// call to create a Tensor in PyTorch. If so, then _lazy_init has
// not been called, and the attempt to call createPyObject will fail
// because cuda ATen types have not been registered in Python yet.
// so if we have a cuda tensor, then we need to make sure
// we have called _lazy_init here
if(atensor.is_cuda()) {
py::module::import("torch.cuda").attr("init")();
}
// Make sure this capsule will never be used again.
PyCapsule_SetName(data, "used_dltensor");
return THPVariable_Wrap(std::move(atensor));
END_HANDLE_TH_ERRORS
}
PyObject *THPModule_setAllowTF32CuDNN(PyObject *_unused, PyObject *arg)
{
THPUtils_assert(PyBool_Check(arg), "set_allow_tf32_cublas expects a bool, "
"but got %s", THPUtils_typename(arg));
at::globalContext().setAllowTF32CuDNN(arg == Py_True);
Py_RETURN_NONE;
}
PyObject *THPModule_allowTF32CuDNN(PyObject *_unused, PyObject *noargs)
{
if (at::globalContext().allowTF32CuDNN()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_setUserEnabledCuDNN(PyObject *_unused, PyObject *arg)
{
THPUtils_assert(PyBool_Check(arg), "set_enabled_cudnn expects a bool, "
"but got %s", THPUtils_typename(arg));
at::globalContext().setUserEnabledCuDNN(arg == Py_True);
Py_RETURN_NONE;
}
PyObject *THPModule_userEnabledCuDNN(PyObject *_unused, PyObject *noargs)
{
if (at::globalContext().userEnabledCuDNN()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_setUserEnabledMkldnn(PyObject *_unused, PyObject *arg)
{
THPUtils_assert(PyBool_Check(arg), "set_enabled_mkldnn expects a bool, "
"but got %s", THPUtils_typename(arg));
at::globalContext().setUserEnabledMkldnn(arg == Py_True);
Py_RETURN_NONE;
}
PyObject *THPModule_userEnabledMkldnn(PyObject *_unused, PyObject *noargs)
{
if (at::globalContext().userEnabledMkldnn()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_setDeterministicCuDNN(PyObject *_unused, PyObject *arg)
{
THPUtils_assert(PyBool_Check(arg), "set_deterministic_cudnn expects a bool, "
"but got %s", THPUtils_typename(arg));
at::globalContext().setDeterministicCuDNN(arg == Py_True);
Py_RETURN_NONE;
}
PyObject *THPModule_deterministicCuDNN(PyObject *_unused, PyObject *noargs)
{
if (at::globalContext().deterministicCuDNN()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_setDeterministic(PyObject *_unused, PyObject *arg)
{
THPUtils_assert(PyBool_Check(arg), "set_deterministic expects a bool, "
"but got %s", THPUtils_typename(arg));
at::globalContext().setDeterministic(arg == Py_True);
Py_RETURN_NONE;
}
PyObject *THPModule_deterministic(PyObject *_unused, PyObject *noargs)
{
if (at::globalContext().deterministic()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_setBenchmarkCuDNN(PyObject *_unused, PyObject *arg)
{
THPUtils_assert(PyBool_Check(arg), "set_benchmark_cudnn expects a bool, "
"but got %s", THPUtils_typename(arg));
#ifdef __HIP_PLATFORM_HCC__
if (arg == Py_False) {
TORCH_WARN_ONCE("Disabling benchmark mode for MIOpen is NOT supported. Overriding value to True");
arg = Py_True;
}
#endif
at::globalContext().setBenchmarkCuDNN(arg == Py_True);
Py_RETURN_NONE;
}
PyObject *THPModule_benchmarkCuDNN(PyObject *_unused, PyObject *noargs)
{
if (at::globalContext().benchmarkCuDNN()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_setAllowTF32CuBLAS(PyObject *_unused, PyObject *arg)
{
THPUtils_assert(PyBool_Check(arg), "set_allow_tf32_cublas expects a bool, "
"but got %s", THPUtils_typename(arg));
at::globalContext().setAllowTF32CuBLAS(arg == Py_True);
Py_RETURN_NONE;
}
PyObject *THPModule_allowTF32CuBLAS(PyObject *_unused, PyObject *noargs)
{
if (at::globalContext().allowTF32CuBLAS()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
PyObject *THPModule_setFlushDenormal(PyObject *_unused, PyObject *arg) {
THPUtils_assert(PyBool_Check(arg), "flush_denormal expects a bool, "
"but got %s", THPUtils_typename(arg));
if (!at::globalContext().setFlushDenormal(arg == Py_True)) {
Py_RETURN_FALSE;
};
Py_RETURN_TRUE;
}
PyObject *THPModule_getDefaultDtype(PyObject *_unused, PyObject *arg) {
HANDLE_TH_ERRORS
auto scalar_type = torch::tensors::get_default_scalar_type();
auto dtype = (PyObject*)torch::getTHPDtype(scalar_type);
Py_INCREF(dtype);
return dtype;
END_HANDLE_TH_ERRORS
}
PyObject *THPModule_getDefaultDevice(PyObject *_unused, PyObject *arg) {
HANDLE_TH_ERRORS
return THPUtils_packString(
c10::DeviceTypeName(computeDeviceType(torch::tensors::get_default_dispatch_key()),
/*lower_case=*/true));
END_HANDLE_TH_ERRORS
}
PyObject *THPModule_setQEngine(PyObject */* unused */, PyObject *arg)
{
THPUtils_assert(THPUtils_checkLong(arg), "set_qengine expects an int, "
"but got %s", THPUtils_typename(arg));
auto qengine = static_cast<int>(THPUtils_unpackLong(arg));
at::globalContext().setQEngine(static_cast<at::QEngine>(qengine));
Py_RETURN_NONE;
}
PyObject *THPModule_qEngine(PyObject */* unused */)
{
return THPUtils_packInt64(static_cast<int>(at::globalContext().qEngine()));
}
PyObject *THPModule_supportedQEngines(PyObject */* unused */)
{
auto qengines = at::globalContext().supportedQEngines();
auto list = THPObjectPtr(PyList_New(qengines.size()));
for (size_t i = 0; i < qengines.size(); ++i) {
PyObject *i64 = THPUtils_packInt64(static_cast<int>(qengines[i]));
if (!i64) {
throw python_error();
}
PyList_SET_ITEM(list.get(), i, i64);
}
return list.release();
}
PyObject *THPModule_isEnabledXNNPACK(PyObject * /* unused */)
{
if (at::globalContext().isXNNPACKAvailable()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
static PyObject * THPModule_vmapmode_increment_nesting(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(at::impl::VmapMode::increment_nesting());
END_HANDLE_TH_ERRORS
}
static PyObject * THPModule_vmapmode_decrement_nesting(PyObject* _unused, PyObject *arg) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(at::impl::VmapMode::decrement_nesting());
END_HANDLE_TH_ERRORS
}
//NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays, modernize-avoid-c-arrays)
static PyMethodDef TorchMethods[] = {
{"_initExtension", (PyCFunction)THPModule_initExtension, METH_O, nullptr},
{"_autograd_init", (PyCFunction)THPAutograd_initExtension, METH_NOARGS, nullptr},
{"_add_docstr", (PyCFunction)THPModule_addDocStr, METH_VARARGS, nullptr},
{"_init_names", (PyCFunction)THPModule_initNames, METH_O, nullptr},
{"_has_distributed",(PyCFunction)THPModule_hasDistributed, METH_NOARGS, nullptr},
{"_set_default_tensor_type", (PyCFunction)THPModule_setDefaultTensorType, METH_O, nullptr},
{"_set_default_dtype", (PyCFunction)THPModule_setDefaultDtype, METH_O, nullptr},
{"_infer_size", (PyCFunction)THPModule_inferSize, METH_VARARGS, nullptr},
{"_crash_if_csrc_asan", (PyCFunction)THPModule_crashIfCsrcASAN, METH_O, nullptr},
{"_crash_if_csrc_ubsan", (PyCFunction)THPModule_crashIfCsrcUBSAN, METH_O, nullptr},
{"_crash_if_aten_asan", (PyCFunction)THPModule_crashIfATenASAN, METH_O, nullptr},
{"_show_config", (PyCFunction)THPModule_showConfig, METH_NOARGS, nullptr},
{"_parallel_info", (PyCFunction)THPModule_parallelInfo, METH_NOARGS, nullptr},
{"_set_backcompat_broadcast_warn", (PyCFunction)THPModule_setBackcompatBroadcastWarn, METH_O, nullptr},
{"_get_backcompat_broadcast_warn", (PyCFunction)THPModule_getBackcompatBroadcastWarn, METH_NOARGS, nullptr},
{"_set_backcompat_keepdim_warn", (PyCFunction)THPModule_setBackcompatKeepdimWarn, METH_O, nullptr},
{"_get_backcompat_keepdim_warn", (PyCFunction)THPModule_getBackcompatKeepdimWarn, METH_NOARGS, nullptr},
{"get_num_threads", (PyCFunction)THPModule_getNumThreads, METH_NOARGS, nullptr},
{"set_num_threads", (PyCFunction)THPModule_setNumThreads, METH_O, nullptr},
{"get_num_interop_threads", (PyCFunction)THPModule_getNumInteropThreads, METH_NOARGS, nullptr},
{"set_num_interop_threads", (PyCFunction)THPModule_setNumInteropThreads, METH_O, nullptr},
{"_get_cudnn_enabled", (PyCFunction)THPModule_userEnabledCuDNN, METH_NOARGS, nullptr},
{"_set_cudnn_enabled", (PyCFunction)THPModule_setUserEnabledCuDNN, METH_O, nullptr},
{"_get_mkldnn_enabled", (PyCFunction)THPModule_userEnabledMkldnn, METH_NOARGS, nullptr},
{"_set_mkldnn_enabled", (PyCFunction)THPModule_setUserEnabledMkldnn, METH_O, nullptr},
{"_get_cudnn_allow_tf32", (PyCFunction)THPModule_allowTF32CuDNN, METH_NOARGS, nullptr},
{"_set_cudnn_allow_tf32", (PyCFunction)THPModule_setAllowTF32CuDNN, METH_O, nullptr},
{"_get_cudnn_benchmark", (PyCFunction)THPModule_benchmarkCuDNN, METH_NOARGS, nullptr},
{"_set_cudnn_benchmark", (PyCFunction)THPModule_setBenchmarkCuDNN, METH_O, nullptr},
{"_get_cudnn_deterministic", (PyCFunction)THPModule_deterministicCuDNN, METH_NOARGS, nullptr},
{"_set_cudnn_deterministic", (PyCFunction)THPModule_setDeterministicCuDNN, METH_O, nullptr},
{"_get_deterministic", (PyCFunction)THPModule_deterministic, METH_NOARGS, nullptr},
{"_set_deterministic", (PyCFunction)THPModule_setDeterministic, METH_O, nullptr},
{"_get_cublas_allow_tf32", (PyCFunction)THPModule_allowTF32CuBLAS, METH_NOARGS, nullptr},
{"_set_cublas_allow_tf32", (PyCFunction)THPModule_setAllowTF32CuBLAS, METH_O, nullptr},
{"_vmapmode_increment_nesting", (PyCFunction)THPModule_vmapmode_increment_nesting, METH_NOARGS, nullptr},
{"_vmapmode_decrement_nesting", (PyCFunction)THPModule_vmapmode_decrement_nesting, METH_NOARGS, nullptr},
{"_to_dlpack", (PyCFunction)THPModule_toDLPack, METH_O, nullptr},
{"_from_dlpack", (PyCFunction)THPModule_fromDLPack, METH_O, nullptr},
{"set_flush_denormal", (PyCFunction)THPModule_setFlushDenormal, METH_O, nullptr},
{"get_default_dtype", (PyCFunction)THPModule_getDefaultDtype, METH_NOARGS, nullptr},
{"_get_default_device", (PyCFunction)THPModule_getDefaultDevice, METH_NOARGS, nullptr},
{"_get_qengine", (PyCFunction)THPModule_qEngine, METH_NOARGS, nullptr},
{"_set_qengine", (PyCFunction)THPModule_setQEngine, METH_O, nullptr},
{"_supported_qengines", (PyCFunction)THPModule_supportedQEngines, METH_NOARGS, nullptr},
{"_is_xnnpack_enabled", (PyCFunction)THPModule_isEnabledXNNPACK, METH_NOARGS, nullptr},
{"_is_torch_function_enabled", (PyCFunction)THPModule_isEnabledTorchFunction, METH_NOARGS, nullptr},
{"_disabled_torch_function_impl", (PyCFunction)THPModule_disable_torch_function, METH_VARARGS, nullptr},
{nullptr, nullptr, 0, nullptr}
};
bool THCPDoubleStorage_init(PyObject *module);
bool THCPFloatStorage_init(PyObject *module);
bool THCPHalfStorage_init(PyObject *module);
bool THCPLongStorage_init(PyObject *module);
bool THCPIntStorage_init(PyObject *module);
bool THCPShortStorage_init(PyObject *module);
bool THCPCharStorage_init(PyObject *module);
bool THCPByteStorage_init(PyObject *module);
bool THCPBoolStorage_init(PyObject *module);
bool THCPBFloat16Storage_init(PyObject *module);
bool THCPComplexDoubleStorage_init(PyObject *module);
bool THCPComplexFloatStorage_init(PyObject *module);
void THCPStream_init(PyObject *module);
void THCPEvent_init(PyObject *module);
#ifdef USE_CUDA
PyMethodDef* THCPModule_methods();
namespace torch { namespace cuda {
void initModule(PyObject *module);
}} // namespace torch::cuda
#endif
bool THDPDoubleStorage_init(PyObject *module);
bool THDPFloatStorage_init(PyObject *module);
// TODO: fix
//bool THDPHalfStorage_init(PyObject *module);
bool THDPLongStorage_init(PyObject *module);
bool THDPIntStorage_init(PyObject *module);
bool THDPShortStorage_init(PyObject *module);
bool THDPCharStorage_init(PyObject *module);
bool THDPByteStorage_init(PyObject *module);
bool THDPBoolStorage_init(PyObject *module);
bool THDPBFloat16Storage_init(PyObject *module);
bool THDPComplexDoubleStorage_init(PyObject *module);
bool THDPComplexFloatStorage_init(PyObject *module);
static std::vector<PyMethodDef> methods;
// In Python we can't use the trick of C10_LOG_API_USAGE_ONCE
// Guaranteed to be invoked from Python under GIL, no locking on map needed
static void LogAPIUsageOnceFromPython(const std::string& event) {
static std::unordered_set<std::string> seen;
if (!seen.count(event)) {
seen.insert(event);
c10::LogAPIUsage(event);
}
}
extern "C"
#ifdef _WIN32
__declspec(dllexport)
#endif
PyObject* initModule() {
HANDLE_TH_ERRORS
at::internal::lazy_init_num_threads();
C10_LOG_API_USAGE_ONCE("torch.python.import");
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define ASSERT_TRUE(cmd) if (!(cmd)) return nullptr
THPUtils_addPyMethodDefs(methods, TorchMethods);
THPUtils_addPyMethodDefs(methods, DataLoaderMethods);
THPUtils_addPyMethodDefs(methods, torch::autograd::python_functions());
THPUtils_addPyMethodDefs(methods, torch::multiprocessing::python_functions());
#ifdef USE_CUDA
THPUtils_addPyMethodDefs(methods, THCPModule_methods());
#endif
#if defined(USE_DISTRIBUTED) && defined(USE_C10D)
THPUtils_addPyMethodDefs(methods, torch::distributed::c10d::python_functions());
#ifndef _WIN32
THPUtils_addPyMethodDefs(methods, torch::distributed::rpc::python_functions());
THPUtils_addPyMethodDefs(
methods, torch::distributed::autograd::python_functions());
THPUtils_addPyMethodDefs(methods, torch::distributed::rpc::testing::python_functions());
#endif
#endif
static struct PyModuleDef torchmodule = {
PyModuleDef_HEAD_INIT,
"torch._C",
nullptr,
-1,
methods.data()
};
ASSERT_TRUE(module = PyModule_Create(&torchmodule));
ASSERT_TRUE(THPWrapper_init(module));
ASSERT_TRUE(THPGenerator_init(module));
ASSERT_TRUE(THPException_init(module));
THPSize_init(module);
THPDtype_init(module);
THPDTypeInfo_init(module);
THPLayout_init(module);
THPMemoryFormat_init(module);
THPQScheme_init(module);
THPDevice_init(module);
ASSERT_TRUE(THPVariable_initModule(module));
ASSERT_TRUE(THPFunction_initModule(module));
ASSERT_TRUE(THPEngine_initModule(module));
// NOTE: We need to be able to access OperatorExportTypes from ONNX for use in
// the export side of JIT, so this ONNX init needs to appear before the JIT
// init.
torch::onnx::initONNXBindings(module);
torch::jit::initJITBindings(module);
torch::impl::dispatch::initDispatchBindings(module);
torch::throughput_benchmark::initThroughputBenchmarkBindings(module);
torch::autograd::initNNFunctions(module);
torch::autograd::initFFTFunctions(module);
torch::autograd::initLinalgFunctions(module);
torch::autograd::init_legacy_variable(module);
torch::python::init_bindings(module);
#ifdef USE_CUDA
torch::cuda::initModule(module);
#endif
ASSERT_TRUE(THPDoubleStorage_init(module));
ASSERT_TRUE(THPFloatStorage_init(module));
ASSERT_TRUE(THPHalfStorage_init(module));
ASSERT_TRUE(THPLongStorage_init(module));
ASSERT_TRUE(THPIntStorage_init(module));
ASSERT_TRUE(THPShortStorage_init(module));
ASSERT_TRUE(THPCharStorage_init(module));
ASSERT_TRUE(THPByteStorage_init(module));
ASSERT_TRUE(THPBoolStorage_init(module));
ASSERT_TRUE(THPQUInt8Storage_init(module));
ASSERT_TRUE(THPQInt8Storage_init(module));
ASSERT_TRUE(THPQInt32Storage_init(module));
ASSERT_TRUE(THPBFloat16Storage_init(module));
ASSERT_TRUE(THPComplexDoubleStorage_init(module));
ASSERT_TRUE(THPComplexFloatStorage_init(module));
#ifdef USE_CUDA
// This will only initialise base classes and attach them to library namespace
// They won't be ready for real usage until importing cuda module, that will
// complete the process (but it defines Python classes before calling back into
// C, so these lines have to execute first)..
ASSERT_TRUE(THCPDoubleStorage_init(module));
ASSERT_TRUE(THCPFloatStorage_init(module));
ASSERT_TRUE(THCPHalfStorage_init(module));
ASSERT_TRUE(THCPLongStorage_init(module));
ASSERT_TRUE(THCPIntStorage_init(module));
ASSERT_TRUE(THCPShortStorage_init(module));
ASSERT_TRUE(THCPCharStorage_init(module));
ASSERT_TRUE(THCPByteStorage_init(module));
ASSERT_TRUE(THCPBoolStorage_init(module));
ASSERT_TRUE(THCPBFloat16Storage_init(module));
ASSERT_TRUE(THCPComplexDoubleStorage_init(module));
ASSERT_TRUE(THCPComplexFloatStorage_init(module));
THCPStream_init(module);
THCPEvent_init(module);
#endif
auto set_module_attr = [&](const char* name, PyObject* v, bool incref = true) {
// PyModule_AddObject steals reference
if (incref) {
Py_INCREF(v);
}
return PyModule_AddObject(module, name, v) == 0;
};
#if defined(USE_CUDNN) || defined(__HIP_PLATFORM_HCC__)
PyObject *has_cudnn = Py_True;
#else
PyObject *has_cudnn = Py_False;
#endif
ASSERT_TRUE(set_module_attr("has_cudnn", has_cudnn));
// force ATen to initialize because it handles
// setting up TH Errors so that they throw C++ exceptions
at::init();
// Automatically translate errors thrown from pybind11 functions
py::register_exception_translator([](std::exception_ptr e) { // NOLINT
try {
if (e) {
std::rethrow_exception(e);
}
}
CATCH_TH_ERRORS()
});
auto py_module = py::reinterpret_borrow<py::module>(module);
py_module.def("_demangle", &c10::demangle);
py_module.def("_log_api_usage_once", &LogAPIUsageOnceFromPython);
py_module.def(
"init_num_threads",
torch::wrap_pybind_function(at::init_num_threads),
R"(
init_num_threads()
Initializes the number of parallel threads used on the current thread.
Call this whenever a new thread is created in order to propagate values from
:func:`torch.set_num_threads` onto the new thread.
)");
ASSERT_TRUE(set_module_attr("has_openmp", at::hasOpenMP() ? Py_True : Py_False));
ASSERT_TRUE(set_module_attr("has_mkl", at::hasMKL() ? Py_True : Py_False));
ASSERT_TRUE(set_module_attr("has_lapack", at::hasLAPACK() ? Py_True : Py_False));
py_module.def(
"_valgrind_supported_platform", [](){
#if defined(NVALGRIND)
return false;
#else
return true;
#endif
}
);
py_module.def(
"_valgrind_toggle", [](){
#if defined(NVALGRIND)
TORCH_CHECK(false, "Valgrind is not supported.");
#else
CALLGRIND_TOGGLE_COLLECT;
#endif
}
);
#ifdef USE_CUDA
PyObject *has_cuda = Py_True;
#else
PyObject *has_cuda = Py_False;
#endif
ASSERT_TRUE(set_module_attr("has_cuda", has_cuda));
ASSERT_TRUE(set_module_attr("has_mkldnn", at::hasMKLDNN() ? Py_True : Py_False));
#ifdef _GLIBCXX_USE_CXX11_ABI
ASSERT_TRUE(set_module_attr("_GLIBCXX_USE_CXX11_ABI", _GLIBCXX_USE_CXX11_ABI ? Py_True : Py_False));
#else
ASSERT_TRUE(set_module_attr("_GLIBCXX_USE_CXX11_ABI", Py_False));
#endif
// See note [Pybind11 ABI constants]
#define SET_STR_DEFINE(name) \
ASSERT_TRUE(set_module_attr("_" # name, THPUtils_packString(name)))
#ifdef PYBIND11_COMPILER_TYPE
SET_STR_DEFINE(PYBIND11_COMPILER_TYPE);
#else
ASSERT_TRUE(set_module_attr("_" C10_STRINGIZE(PYBIND11_COMPILER_TYPE), Py_None));
#endif
#ifdef PYBIND11_STDLIB
SET_STR_DEFINE(PYBIND11_STDLIB);
#else
ASSERT_TRUE(set_module_attr("_" C10_STRINGIZE(PYBIND11_STDLIB), Py_None));
#endif
#ifdef PYBIND11_BUILD_ABI
SET_STR_DEFINE(PYBIND11_BUILD_ABI);
#else
ASSERT_TRUE(set_module_attr("_" C10_STRINGIZE(PYBIND11_BUILD_ABI), Py_None));
#endif
#undef SET_STR_DEFINE
const auto& defaultGenerator = at::detail::getDefaultCPUGenerator();
THPDefaultCPUGenerator = (THPGenerator*)THPGenerator_initDefaultGenerator(defaultGenerator);
// This reference is meant to be given away, so no need to incref here.
ASSERT_TRUE(set_module_attr("default_generator", (PyObject*)THPDefaultCPUGenerator, /* incref= */ false));
ASSERT_TRUE(set_module_attr("DisableTorchFunction", (PyObject*)THPModule_DisableTorchFunctionType(), /* incref= */ false));
torch::set_disabled_torch_function_impl(PyObject_GetAttrString(module, "_disabled_torch_function_impl"));
ASSERT_TRUE(torch::disabled_torch_function_impl() != nullptr);
#ifdef USE_NUMPY
if (_import_array() < 0) return nullptr;
#endif
return module;
END_HANDLE_TH_ERRORS
}
// Checks that the _C shared library isn't initialized multiple times. This
// can happen if the same csrc files are compiled into multiple shared
// libraries.
inline void pytorch_duplicate_guard() {
static int initialized = 0;
if (initialized) {
fprintf(stderr, "pytorch: _C shared library re-initialized\n");
abort();
}
initialized = 1;
;}
struct call_duplicate_guard {
call_duplicate_guard() { pytorch_duplicate_guard(); }
};
static call_duplicate_guard _call_duplicate_guard;
|