1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
#pragma once
// Wrap tensor operation outputs as PyObject*
#include <ATen/ATen.h>
#include <torch/csrc/python_headers.h>
#include <tuple>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/tensor_qschemes.h>
#include <torch/csrc/DynamicTypes.h>
namespace torch { namespace autograd { namespace utils {
inline PyObject* wrap(bool value) {
if (value) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
inline PyObject* wrap(int64_t value) {
return THPUtils_packInt64(value);
}
inline PyObject* wrap(double value) {
return PyFloat_FromDouble(value);
}
inline PyObject* wrap(c10::complex<double> value) {
// I could probably also use FromComplex with a reinterpret cast,
// but... eh.
return PyComplex_FromDoubles(value.real(), value.imag());
}
inline PyObject* wrap(void* value) {
return THPUtils_packInt64(reinterpret_cast<intptr_t>(value));
}
inline PyObject* wrap(THPDtype *dtype) {
Py_INCREF(dtype);
return (PyObject*)dtype;
}
inline PyObject* wrap(at::ScalarType scalarType) {
return wrap(getTHPDtype(scalarType));
}
inline PyObject* wrap(THPLayout *layout) {
Py_INCREF(layout);
return (PyObject*)layout;
}
inline PyObject* wrap(at::Layout layout) {
return wrap(getTHPLayout(layout));
}
inline PyObject* wrap(at::Tensor tensor) {
return THPVariable_Wrap(Variable(std::move(tensor)));
}
inline PyObject* wrap(at::Scalar scalar) {
return wrap(scalar_to_tensor(scalar));
}
inline PyObject* wrap(at::QScheme qscheme) {
auto* thp_qscheme = torch::utils::getTHPQScheme(qscheme);
Py_INCREF(thp_qscheme);
return thp_qscheme;
}
inline PyObject* wrap(std::tuple<at::Tensor, at::Tensor> tensors) {
auto r = THPObjectPtr{PyTuple_New(2)};
if (!r) throw python_error();
PyTuple_SET_ITEM(r.get(), 0, wrap(std::get<0>(tensors)));
PyTuple_SET_ITEM(r.get(), 1, wrap(std::get<1>(tensors)));
return r.release();
}
inline PyObject* wrap(PyTypeObject *type, std::tuple<at::Tensor, at::Tensor> tensors) {
auto r = THPObjectPtr{PyStructSequence_New(type)};
if (!r) throw python_error();
PyStructSequence_SET_ITEM(r.get(), 0, wrap(std::get<0>(tensors)));
PyStructSequence_SET_ITEM(r.get(), 1, wrap(std::get<1>(tensors)));
return r.release();
}
inline PyObject* wrap(std::tuple<at::Tensor, at::Tensor, at::Tensor> tensors) {
auto r = THPObjectPtr{PyTuple_New(3)};
if (!r) throw python_error();
PyTuple_SET_ITEM(r.get(), 0, wrap(std::move(std::get<0>(tensors))));
PyTuple_SET_ITEM(r.get(), 1, wrap(std::move(std::get<1>(tensors))));
PyTuple_SET_ITEM(r.get(), 2, wrap(std::move(std::get<2>(tensors))));
return r.release();
}
inline PyObject* wrap(PyTypeObject *type, std::tuple<at::Tensor, at::Tensor, at::Tensor> tensors) {
auto r = THPObjectPtr{PyStructSequence_New(type)};
if (!r) throw python_error();
PyStructSequence_SET_ITEM(r.get(), 0, wrap(std::get<0>(tensors)));
PyStructSequence_SET_ITEM(r.get(), 1, wrap(std::get<1>(tensors)));
PyStructSequence_SET_ITEM(r.get(), 2, wrap(std::get<2>(tensors)));
return r.release();
}
inline PyObject* wrap(std::tuple<at::Tensor, at::Tensor, at::Tensor, int64_t> tensors) {
auto r = THPObjectPtr{PyTuple_New(4)};
if (!r) throw python_error();
PyTuple_SET_ITEM(r.get(), 0, wrap(std::move(std::get<0>(tensors))));
PyTuple_SET_ITEM(r.get(), 1, wrap(std::move(std::get<1>(tensors))));
PyTuple_SET_ITEM(r.get(), 2, wrap(std::move(std::get<2>(tensors))));
PyTuple_SET_ITEM(r.get(), 3, wrap(std::get<3>(tensors)));
return r.release();
}
inline PyObject* wrap(std::tuple<at::Tensor, at::Tensor, float, int64_t> tensors) {
auto r = THPObjectPtr{PyTuple_New(4)};
if (!r) throw python_error();
PyTuple_SET_ITEM(r.get(), 0, wrap(std::move(std::get<0>(tensors))));
PyTuple_SET_ITEM(r.get(), 1, wrap(std::move(std::get<1>(tensors))));
PyTuple_SET_ITEM(r.get(), 2, wrap(std::move(std::get<2>(tensors))));
PyTuple_SET_ITEM(r.get(), 3, wrap(std::move(std::get<3>(tensors))));
return r.release();
}
inline PyObject* wrap(std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor, int64_t> tensors) {
auto r = THPObjectPtr{PyTuple_New(5)};
if (!r) throw python_error();
PyTuple_SET_ITEM(r.get(), 0, wrap(std::move(std::get<0>(tensors))));
PyTuple_SET_ITEM(r.get(), 1, wrap(std::move(std::get<1>(tensors))));
PyTuple_SET_ITEM(r.get(), 2, wrap(std::move(std::get<2>(tensors))));
PyTuple_SET_ITEM(r.get(), 3, wrap(std::move(std::get<3>(tensors))));
PyTuple_SET_ITEM(r.get(), 4, wrap(std::get<4>(tensors)));
return r.release();
}
inline PyObject* wrap(std::tuple<at::Tensor, at::Tensor, float, at::Tensor, int64_t> tensors) {
auto r = THPObjectPtr{PyTuple_New(5)};
if (!r) throw python_error();
PyTuple_SET_ITEM(r.get(), 0, wrap(std::move(std::get<0>(tensors))));
PyTuple_SET_ITEM(r.get(), 1, wrap(std::move(std::get<1>(tensors))));
PyTuple_SET_ITEM(r.get(), 2, wrap(std::move(std::get<2>(tensors))));
PyTuple_SET_ITEM(r.get(), 3, wrap(std::move(std::get<3>(tensors))));
PyTuple_SET_ITEM(r.get(), 4, wrap(std::move(std::get<4>(tensors))));
return r.release();
}
inline PyObject* wrap(std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor> tensors) {
auto r = THPObjectPtr{PyTuple_New(4)};
if (!r) throw python_error();
PyTuple_SET_ITEM(r.get(), 0, wrap(std::move(std::get<0>(tensors))));
PyTuple_SET_ITEM(r.get(), 1, wrap(std::move(std::get<1>(tensors))));
PyTuple_SET_ITEM(r.get(), 2, wrap(std::move(std::get<2>(tensors))));
PyTuple_SET_ITEM(r.get(), 3, wrap(std::move(std::get<3>(tensors))));
return r.release();
}
inline PyObject* wrap(std::tuple<at::Tensor, at::Tensor, at::Tensor, at::Tensor, at::Tensor> tensors) {
auto r = THPObjectPtr{PyTuple_New(5)};
if (!r) throw python_error();
PyTuple_SET_ITEM(r.get(), 0, wrap(std::move(std::get<0>(tensors))));
PyTuple_SET_ITEM(r.get(), 1, wrap(std::move(std::get<1>(tensors))));
PyTuple_SET_ITEM(r.get(), 2, wrap(std::move(std::get<2>(tensors))));
PyTuple_SET_ITEM(r.get(), 3, wrap(std::move(std::get<3>(tensors))));
PyTuple_SET_ITEM(r.get(), 4, wrap(std::move(std::get<4>(tensors))));
return r.release();
}
inline PyObject* wrap(at::TensorList tl) {
auto r = THPObjectPtr{PyTuple_New(tl.size())};
if (!r) throw python_error();
for (size_t i = 0; i < tl.size(); ++i) {
PyTuple_SET_ITEM(r.get(), i, wrap(tl[i]));
}
return r.release();
}
inline PyObject* wrap(at::IntArrayRef list) {
auto r = THPObjectPtr{PyTuple_New(list.size())};
if (!r) throw python_error();
for (size_t i = 0; i < list.size(); ++i) {
PyTuple_SET_ITEM(r.get(), i, wrap(list[i]));
}
return r.release();
}
inline PyObject* wrap(std::tuple<float, int64_t> tensors) {
auto r = THPObjectPtr{PyTuple_New(2)};
if (!r) throw python_error();
PyTuple_SET_ITEM(r.get(), 0, wrap(std::move(std::get<0>(tensors))));
PyTuple_SET_ITEM(r.get(), 1, wrap(std::move(std::get<1>(tensors))));
return r.release();
}
}}} // namespace torch::autograd::utils
|