1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
#include <array>
#include <unordered_map>
#include <thread>
#include <chrono>
#include <sstream>
#include <TH/TH.h>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/CUDAGeneratorImpl.h>
#include <c10/cuda/CUDAFunctions.h>
#include <c10/cuda/CUDACachingAllocator.h>
#ifdef USE_NCCL
#include <torch/csrc/cuda/python_nccl.h>
#endif
#include <torch/csrc/cuda/THCP.h>
#include <torch/csrc/CudaIPCTypes.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/cuda_lazy_init.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/cuda/python_comm.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/python_headers.h>
#ifndef WIN32
#include <pthread.h>
#endif
using namespace torch;
THCState *state = nullptr;
static bool in_bad_fork = false; // True for children forked after cuda init
#ifndef WIN32
// Called in the forked child if cuda has already been initialized
static void forked_child() {
in_bad_fork = true;
torch::utils::set_run_yet_variable_to_false();
state = nullptr;
}
#endif
// Should be called before the first cuda call.
// Note: This is distinct from initExtension because a stub cuda implementation
// has some working functions (e.g. device_count) but cannot fully initialize.
static void poison_fork() {
#ifndef WIN32
static std::once_flag flag;
std::call_once(flag, []{ pthread_atfork(nullptr, nullptr, forked_child); });
#endif
}
////////////////////////////////////////////////////////////////////////////////
// CUDA management methods
////////////////////////////////////////////////////////////////////////////////
void THCPModule_setDevice(int device)
{
c10::cuda::set_device(static_cast<c10::DeviceIndex>(device));
}
PyObject * THCPModule_setDevice_wrap(PyObject *self, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to setDevice");
int64_t device = THPUtils_unpackLong(arg);
torch::utils::cuda_lazy_init();
THCPModule_setDevice(device);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getDevice_wrap(PyObject *self, PyObject *noargs)
{
HANDLE_TH_ERRORS
torch::utils::cuda_lazy_init();
auto device = static_cast<int>(c10::cuda::current_device());
return PyLong_FromLong(device);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getDeviceCount_wrap(PyObject *self, PyObject *noargs)
{
HANDLE_TH_ERRORS
poison_fork();
return PyLong_FromLong(at::cuda::device_count());
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getArchFlags(PyObject *self, PyObject *noargs)
{
HANDLE_TH_ERRORS
poison_fork();
#ifdef CUDA_ARCH_FLAGS
static const char* flags = C10_STRINGIZE(CUDA_ARCH_FLAGS);
return THPUtils_packString(flags);
#else
Py_RETURN_NONE;
#endif
END_HANDLE_TH_ERRORS
}
static PyObject * THCPModule_isInBadFork(PyObject *self, PyObject *noargs) {
HANDLE_TH_ERRORS
return PyBool_FromLong(in_bad_fork);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getCurrentStream_wrap(
PyObject * /* unused */, PyObject *device_index) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(device_index), "invalid argument to getCurrentStream");
int64_t device = THPUtils_unpackLong(device_index);
return PyLong_FromUnsignedLongLong(
at::cuda::getCurrentCUDAStream(device).pack());
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getDefaultStream_wrap(
PyObject * /* unused */, PyObject *device_index) {
HANDLE_TH_ERRORS
THPUtils_assert(
THPUtils_checkLong(device_index), "invalid argument to getDefaultStream");
int64_t device = THPUtils_unpackLong(device_index);
return PyLong_FromUnsignedLongLong(
at::cuda::getDefaultCUDAStream(device).pack());
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_setStream_wrap(PyObject *self, PyObject *obj)
{
HANDLE_TH_ERRORS
THPUtils_assert(PyLong_Check(obj), "invalid stream");
uint64_t bits = PyLong_AsUnsignedLongLong(obj);
if (bits == static_cast<uint64_t>(-1) && PyErr_Occurred()) {
throw python_error();
}
auto stream = at::cuda::CUDAStream::unpack(bits);
auto device = static_cast<int>(c10::cuda::current_device());
if (device != stream.device_index()) {
THCPModule_setDevice(stream.device_index());
}
at::cuda::setCurrentCUDAStream(stream);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getCompiledVersion(PyObject *self, PyObject *noargs)
{
return PyLong_FromLong((long) CUDA_VERSION);
}
PyObject * THCPModule_cudaHostAllocator(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
c10::Allocator* allocator = THCState_getCudaHostAllocator(state);
return PyLong_FromVoidPtr(allocator);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaCachingAllocator_raw_alloc(PyObject *_unused, PyObject *args){
HANDLE_TH_ERRORS
PyObject* size_o = nullptr;
PyObject* stream_o = nullptr;
if(!PyArg_ParseTuple(args, "OO", &size_o, &stream_o)) {
THPUtils_invalidArguments(
args,
nullptr,
"caching_allocator_alloc",
1,
"(ssize_t size, intptr_t stream);");
return nullptr;
}
ssize_t size = PyLong_AsSsize_t(size_o);
cudaStream_t stream = static_cast<cudaStream_t>(PyLong_AsVoidPtr(stream_o));
void* mem = c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(size, stream);
return PyLong_FromVoidPtr(mem);
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaCachingAllocator_raw_delete(PyObject *_unused, PyObject *obj){
HANDLE_TH_ERRORS
void* mem_ptr = PyLong_AsVoidPtr(obj);
c10::cuda::CUDACachingAllocator::raw_delete(mem_ptr);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaSynchronize(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
c10::cuda::device_synchronize();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaIPCCollect(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
torch::CudaIPCCollect();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_cudaSleep(PyObject *_unused, PyObject *cycles)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(cycles), "torch.cuda._sleep(): expected 'int'");
THC_sleep(LIBRARY_STATE THPUtils_unpackLong(cycles));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// We need to ensure that as long as a thread will NEVER loose the GIL as long as
// it holds the CUDA mutex. Otherwise another thread might be scheduled and try to
// e.g. allocate a new tensor which will cause a deadlock. It's enough to have a
// single global, because it can be only set once (cudaMutex is not recursive)
// by the thread that owns the mutex (obviously there can be only one such thread).
static PyGILState_STATE cudaMutexGILState;
PyObject * THCPModule_cudaLockMutex(PyObject *module, PyObject *noargs)
{
auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex();
// This has to be a busy loop because we **absolutely need to** hold the GIL
// or it's a recipe for a deadlock otherwise (if we let other Python threads
// run while we have the cudaMutex, but not the GIL, they might try to e.g.
// free a CUDA tensor and acquire the cudaMutex without giving up the GIL,
// because it happens deep within THC).
while (true) {
if (mutex->try_lock())
break;
{
pybind11::gil_scoped_release no_gil;
std::this_thread::sleep_for(std::chrono::microseconds(10));
}
}
cudaMutexGILState = PyGILState_Ensure();
Py_RETURN_NONE;
}
PyObject * THCPModule_cudaUnlockMutex(PyObject *module, PyObject *noargs)
{
auto mutex = c10::cuda::CUDACachingAllocator::getFreeMutex();
PyGILState_Release(cudaMutexGILState);
mutex->unlock();
Py_RETURN_NONE;
}
PyObject * THCPModule_hasPrimaryContext(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to has_primary_context");
int64_t device_index = static_cast<int64_t>(THPUtils_unpackLong(arg));
if (at::detail::getCUDAHooks().hasPrimaryContext(device_index)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_emptyCache(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
c10::cuda::CUDACachingAllocator::emptyCache();
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject * THCPModule_memoryStats(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to memory_allocated");
const int device = (int) THPUtils_unpackLong(arg);
using c10::cuda::CUDACachingAllocator::StatType;
using c10::cuda::CUDACachingAllocator::Stat;
using c10::cuda::CUDACachingAllocator::StatArray;
using c10::cuda::CUDACachingAllocator::DeviceStats;
const auto statToDict = [](const Stat& stat) {
py::dict dict;
dict["current"] = stat.current;
dict["peak"] = stat.peak;
dict["allocated"] = stat.allocated;
dict["freed"] = stat.freed;
return dict;
};
const auto statArrayToDict = [=](const StatArray& statArray) {
const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)> statTypeNames = {
"all", "small_pool", "large_pool"
};
py::dict dict;
for (size_t i = 0; i < statTypeNames.size(); ++i) {
dict[statTypeNames[i]] = statToDict(statArray[i]);
}
return dict;
};
const DeviceStats stats = c10::cuda::CUDACachingAllocator::getDeviceStats(device);
py::dict result;
result["num_alloc_retries"] = stats.num_alloc_retries;
result["num_ooms"] = stats.num_ooms;
result["allocation"] = statArrayToDict(stats.allocation);
result["segment"] = statArrayToDict(stats.segment);
result["active"] = statArrayToDict(stats.active);
result["inactive_split"] = statArrayToDict(stats.inactive_split);
result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes);
result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes);
result["active_bytes"] = statArrayToDict(stats.active_bytes);
result["inactive_split_bytes"] = statArrayToDict(stats.inactive_split_bytes);
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_resetAccumulatedMemoryStats(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to reset_accumulated_memory_stats");
const int device = (int) THPUtils_unpackLong(arg);
c10::cuda::CUDACachingAllocator::resetAccumulatedStats(device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject * THCPModule_resetPeakMemoryStats(PyObject *_unused, PyObject *arg)
{
HANDLE_TH_ERRORS
THPUtils_assert(THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats");
const int device = (int) THPUtils_unpackLong(arg);
c10::cuda::CUDACachingAllocator::resetPeakStats(device);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject * THCPModule_memorySnapshot(PyObject *_unused, PyObject *noargs)
{
HANDLE_TH_ERRORS
using c10::cuda::CUDACachingAllocator::SegmentInfo;
using c10::cuda::CUDACachingAllocator::BlockInfo;
const auto segmentInfoToDict = [](const SegmentInfo& segmentInfo) {
py::dict segmentDict;
segmentDict["device"] = segmentInfo.device;
segmentDict["address"] = segmentInfo.address;
segmentDict["total_size"] = segmentInfo.total_size;
segmentDict["allocated_size"] = segmentInfo.allocated_size;
segmentDict["active_size"] = segmentInfo.active_size;
segmentDict["segment_type"] = (segmentInfo.is_large ? "large" : "small");
py::list blocks;
for (const auto& blockInfo : segmentInfo.blocks) {
py::dict blockDict;
blockDict["size"] = blockInfo.size;
blockDict["state"] = (blockInfo.allocated ? "active_allocated" : (blockInfo.active ? "active_pending_free" : "inactive"));
blocks.append(blockDict);
}
segmentDict["blocks"] = blocks;
return segmentDict;
};
const std::vector<SegmentInfo>& snapshot = c10::cuda::CUDACachingAllocator::snapshot();
py::list result;
for (const auto& segmentInfo : snapshot) {
result.append(segmentInfoToDict(segmentInfo));
}
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
////////////////////////////////////////////////////////////////////////////////
// Cuda module initialization
////////////////////////////////////////////////////////////////////////////////
static void registerCudaDeviceProperties(PyObject* module) {
// Add _cudaDevicePropertires class to torch._C
auto m = py::handle(module).cast<py::module>();
py::class_<cudaDeviceProp>(m, "_CudaDeviceProperties")
.def_readonly("name", &cudaDeviceProp::name)
.def_readonly("major", &cudaDeviceProp::major)
.def_readonly("minor", &cudaDeviceProp::minor)
.def_readonly("is_multi_gpu_board", &cudaDeviceProp::isMultiGpuBoard)
.def_readonly("is_integrated", &cudaDeviceProp::integrated)
.def_readonly("multi_processor_count", &cudaDeviceProp::multiProcessorCount)
.def_readonly("total_memory", &cudaDeviceProp::totalGlobalMem)
.def("__repr__", [](const cudaDeviceProp &prop) {
std::ostringstream stream;
stream << "_CudaDeviceProperties(name='" << prop.name << "', major=" << prop.major
<< ", minor=" << prop.minor << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
<< "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
return stream.str();
});
}
static void bindGetDeviceProperties(PyObject* module) {
// Add method to torch.cuda
auto m = py::handle(module).cast<py::module>();
m.def("_get_device_properties", [](int device) -> cudaDeviceProp * {
return at::cuda::getDeviceProperties(device);
}, py::return_value_policy::reference);
}
// Callback for python part. Used for additional initialization of python classes
static PyObject * THCPModule_initExtension(PyObject *self, PyObject *noargs)
{
#if C10_ASAN_ENABLED
TORCH_WARN(
"torch.cuda: your pytorch binary has address sanitizer (asan) built in, "
"asan is currently not compatible with torch.cuda module, "
"you might get unexpected behavior (eg. out of memory, crash, etc.), "
"please rebuild pytorch without asan if you need to use this module");
#endif
HANDLE_TH_ERRORS
TORCH_INTERNAL_ASSERT(!in_bad_fork); // Handled at python level
poison_fork();
state = at::globalContext().lazyInitCUDA();
auto m = THPObjectPtr(PyImport_ImportModule("torch.cuda"));
if (!m) throw python_error();
// Register Storage Python objects with DynamicTypes.cpp
THCPDoubleStorage_postInit(m);
THCPFloatStorage_postInit(m);
THCPHalfStorage_postInit(m);
THCPLongStorage_postInit(m);
THCPIntStorage_postInit(m);
THCPShortStorage_postInit(m);
THCPCharStorage_postInit(m);
THCPByteStorage_postInit(m);
THCPBoolStorage_postInit(m);
THCPBFloat16Storage_postInit(m);
THCPComplexDoubleStorage_postInit(m);
THCPComplexFloatStorage_postInit(m);
bool has_half = true;
auto set_module_attr = [&](const char* name, PyObject* v) {
// PyObject_SetAttrString doesn't steal reference. So no need to incref.
if (PyObject_SetAttrString(m, name, v) < 0) {
throw python_error();
}
};
set_module_attr("has_magma", at::hasMAGMA() ? Py_True : Py_False);
set_module_attr("has_half", has_half ? Py_True : Py_False);
auto _state_cdata = THPObjectPtr(PyLong_FromVoidPtr(state));
if (!_state_cdata) throw python_error();
set_module_attr("_state_cdata", _state_cdata.get());
auto num_gpus = c10::cuda::device_count();
auto default_cuda_generators = PyTuple_New(static_cast<Py_ssize_t>(num_gpus));
for(int i = 0; i < num_gpus; i++) {
auto gen = at::cuda::detail::getDefaultCUDAGenerator(i);
auto cast_gen = (THPGenerator*)THPGenerator_initDefaultGenerator(gen);
// This reference is meant to be given away, so no need to incref here.
PyTuple_SetItem(default_cuda_generators, i, (PyObject*)cast_gen);
}
set_module_attr("default_generators", default_cuda_generators);
bindGetDeviceProperties(m);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject * THCPModule_getCurrentBlasHandle_wrap(PyObject *self, PyObject *noargs)
{
HANDLE_TH_ERRORS
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
return PyLong_FromVoidPtr(handle);
END_HANDLE_TH_ERRORS
}
static struct PyMethodDef _THCPModule_methods[] = {
{"_cuda_init", (PyCFunction)THCPModule_initExtension, METH_NOARGS, nullptr},
{"_cuda_setDevice", (PyCFunction)THCPModule_setDevice_wrap, METH_O, nullptr},
{"_cuda_getDevice", (PyCFunction)THCPModule_getDevice_wrap, METH_NOARGS, nullptr},
{"_cuda_getDeviceCount", (PyCFunction)THCPModule_getDeviceCount_wrap, METH_NOARGS, nullptr},
{"_cuda_getArchFlags", (PyCFunction)THCPModule_getArchFlags, METH_NOARGS, nullptr},
{"_cuda_isInBadFork", (PyCFunction)THCPModule_isInBadFork, METH_NOARGS, nullptr},
{"_cuda_getCurrentStream",
(PyCFunction)THCPModule_getCurrentStream_wrap, METH_O, nullptr},
{"_cuda_getDefaultStream",
(PyCFunction)THCPModule_getDefaultStream_wrap, METH_O, nullptr},
{"_cuda_getCurrentBlasHandle", (PyCFunction)THCPModule_getCurrentBlasHandle_wrap, METH_NOARGS, nullptr},
{"_cuda_setStream", (PyCFunction)THCPModule_setStream_wrap, METH_O, nullptr},
{"_cuda_getCompiledVersion", (PyCFunction)THCPModule_getCompiledVersion, METH_NOARGS, nullptr},
{"_cuda_hasPrimaryContext", (PyCFunction) THCPModule_hasPrimaryContext, METH_O, nullptr},
{"_cuda_emptyCache", (PyCFunction) THCPModule_emptyCache, METH_NOARGS, nullptr},
{"_cuda_memoryStats", (PyCFunction) THCPModule_memoryStats, METH_O, nullptr},
{"_cuda_resetAccumulatedMemoryStats", (PyCFunction) THCPModule_resetAccumulatedMemoryStats, METH_O, nullptr},
{"_cuda_resetPeakMemoryStats", (PyCFunction) THCPModule_resetPeakMemoryStats, METH_O, nullptr},
{"_cuda_memorySnapshot", (PyCFunction) THCPModule_memorySnapshot, METH_NOARGS, nullptr},
{"_cuda_cudaHostAllocator", (PyCFunction)THCPModule_cudaHostAllocator, METH_NOARGS, nullptr},
{"_cuda_cudaCachingAllocator_raw_alloc", (PyCFunction)THCPModule_cudaCachingAllocator_raw_alloc, METH_VARARGS, nullptr},
{"_cuda_cudaCachingAllocator_raw_delete", (PyCFunction)THCPModule_cudaCachingAllocator_raw_delete, METH_O, nullptr},
{"_cuda_synchronize", (PyCFunction)THCPModule_cudaSynchronize, METH_NOARGS, nullptr},
{"_cuda_ipc_collect", (PyCFunction)THCPModule_cudaIPCCollect, METH_NOARGS, nullptr},
{"_cuda_sleep", (PyCFunction)THCPModule_cudaSleep, METH_O, nullptr},
{"_cuda_lock_mutex", (PyCFunction)THCPModule_cudaLockMutex, METH_NOARGS, nullptr},
{"_cuda_unlock_mutex", (PyCFunction)THCPModule_cudaUnlockMutex, METH_NOARGS, nullptr},
#ifdef USE_NCCL
{"_nccl_version", (PyCFunction)THCPModule_nccl_version, METH_NOARGS, nullptr},
{"_nccl_unique_id", (PyCFunction)THCPModule_nccl_unique_id, METH_NOARGS, nullptr},
{"_nccl_init_rank", (PyCFunction)THCPModule_nccl_init_rank, METH_VARARGS, nullptr},
{"_nccl_reduce", (PyCFunction)THCPModule_nccl_reduce, METH_VARARGS, nullptr},
{"_nccl_all_reduce", (PyCFunction)THCPModule_nccl_all_reduce, METH_VARARGS, nullptr},
{"_nccl_broadcast", (PyCFunction)THCPModule_nccl_broadcast, METH_VARARGS, nullptr},
{"_nccl_all_gather", (PyCFunction)THCPModule_nccl_all_gather, METH_VARARGS, nullptr},
{"_nccl_reduce_scatter", (PyCFunction)THCPModule_nccl_reduce_scatter, METH_VARARGS, nullptr},
#endif
{nullptr}
};
PyMethodDef* THCPModule_methods() {
return _THCPModule_methods;
}
namespace torch { namespace cuda {
namespace shared {
void initCudartBindings(PyObject* module);
void initNvtxBindings(PyObject* module);
#if defined(USE_CUDNN) || defined(__HIP_PLATFORM_HCC__)
void initCudnnBindings(PyObject* module);
#endif
} // namespace shared
void initModule(PyObject *module) {
python::initCommMethods(module);
// As weird as it seems, this file is also compiled for ROCm,
// so this condition might not always be true...
shared::initCudartBindings(module);
shared::initNvtxBindings(module);
#if defined(USE_CUDNN) || defined(__HIP_PLATFORM_HCC__)
shared::initCudnnBindings(module);
#endif
registerCudaDeviceProperties(module);
}
}}
|