File: nccl.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (622 lines) | stat: -rw-r--r-- 17,939 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
#include <torch/csrc/cuda/nccl.h>
#include <torch/csrc/cuda/device_set.h>
#include <ATen/core/functional.h>

#include <ATen/ATen.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/Exception.h>
#include <c10/util/hash.h>

#include <THC/THC.h>

#include <nccl.h>

#include <limits>
#include <sstream>
#include <type_traits>
#include <unordered_map>


ncclComm_t* to_nccl_comm(torch::cuda::nccl::ncclComm_t* var) {
  return reinterpret_cast<ncclComm_t*>(var);
}

ncclUniqueId* to_nccl_unique_id(torch::cuda::nccl::ncclUniqueId* var) {
  return reinterpret_cast<ncclUniqueId*>(var);
}

ncclResult_t to_nccl_result(torch::cuda::nccl::ncclResult var) {
  switch (var) {
    case torch::cuda::nccl::ncclResult::Success:
      return ncclResult_t::ncclSuccess;
    case torch::cuda::nccl::ncclResult::UnhandledCudaError:
      return ncclResult_t::ncclUnhandledCudaError;
    case torch::cuda::nccl::ncclResult::SystemError:
      return ncclResult_t::ncclSystemError;
    case torch::cuda::nccl::ncclResult::InternalError:
      return ncclResult_t::ncclInternalError;
    case torch::cuda::nccl::ncclResult::InvalidArgument:
      return ncclResult_t::ncclInvalidArgument;
    case torch::cuda::nccl::ncclResult::InvalidUsage:
      return ncclResult_t::ncclInvalidUsage;
    case torch::cuda::nccl::ncclResult::NumResults:
      return ncclResult_t::ncclNumResults;
    default:
      throw std::runtime_error("Unconvertible NCCL type");
  }
}

torch::cuda::nccl::ncclResult from_nccl_result(ncclResult_t var) {
    switch (var) {
    case ncclSuccess:
      return torch::cuda::nccl::ncclResult::Success;
    case ncclUnhandledCudaError:
      return torch::cuda::nccl::ncclResult::UnhandledCudaError;
    case ncclSystemError:
      return torch::cuda::nccl::ncclResult::SystemError;
    case ncclInternalError:
      return torch::cuda::nccl::ncclResult::InternalError;
    case ncclInvalidArgument:
      return torch::cuda::nccl::ncclResult::InvalidArgument;
    case ncclInvalidUsage:
      return torch::cuda::nccl::ncclResult::InvalidUsage;
    case ncclNumResults:
      return torch::cuda::nccl::ncclResult::NumResults;
    default:
      throw std::runtime_error("Unconvertible NCCL type");
  }
}

ncclDataType_t to_nccl_data_type(const at::Tensor& t) {
  if (!t.is_cuda()) {
    throw std::runtime_error("Unconvertible NCCL type");
  }
  switch (t.scalar_type()) {
    case at::kFloat:
      return ncclDataType_t::ncclFloat;
    case at::kHalf:
      return ncclDataType_t::ncclHalf;
    case at::kDouble:
      return ncclDataType_t::ncclDouble;
    case at::kLong:
      return ncclDataType_t::ncclInt64;
    case at::kInt:
      return ncclDataType_t::ncclInt;
    case at::kChar:
      return ncclDataType_t::ncclChar;
    case at::kByte:
      return ncclDataType_t::ncclChar;
#if defined(__HIP_PLATFORM_HCC__) && HIP_VERSION >= 301
    case at::kBFloat16:
      return ncclDataType_t::ncclBfloat16;
#endif
    default:
      throw std::runtime_error("Unconvertible NCCL type");
  }
}

ncclRedOp_t to_nccl_red_op(int var) {
  return (ncclRedOp_t)(var);
}

namespace torch {
namespace cuda {
namespace nccl {

using namespace at;

namespace detail {

struct AutoNcclGroup {
  AutoNcclGroup() {
    (c10::cuda::CUDACachingAllocator::getFreeMutex())->lock();
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
    NCCL_CHECK(from_nccl_result(ncclGroupStart()));
#endif
  }
  ~AutoNcclGroup() {
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
    NCCL_CHECK(from_nccl_result(ncclGroupEnd()));
#endif
    (c10::cuda::CUDACachingAllocator::getFreeMutex())->unlock();
  }
};

void throw_nccl_error(torch::cuda::nccl::ncclResult status) {
  std::ostringstream err;
  err << "NCCL Error " << static_cast<int>(status) << ": " << ncclGetErrorString(to_nccl_result(status));
  throw std::runtime_error(err.str());
}

struct NcclCommList {
  std::unique_ptr<ncclComm_t[]> comms;
  int ndevices;
  NcclCommList(const std::vector<int>& devices)
      : comms(new ncclComm_t[devices.size()]), ndevices(devices.size()) {
    NCCL_CHECK(from_nccl_result(
      ncclCommInitAll(to_nccl_comm(comms.get()), devices.size(), devices.data())));
  }
  NcclCommList(NcclCommList&& foo) = default;
  ~NcclCommList() {
    if (comms) {
      for (int i = 0; i < ndevices; i++) {
        int dummy_var;
        if (cudaGetDevice(&dummy_var) != cudaSuccess) {
          /* there are cases when this destructor is called after the
           CUDA driver is already unloaded from the process.
           In these cases, skip ncclCommDestroy */
          return;
        }
        comm_destroy(comms[i]);
      }
    }
  }
  ArrayRef<ncclComm_t> ref() const {
    return ArrayRef<ncclComm_t>(comms.get(), ndevices);
  }
};

using device_list = std::vector<int>;
// accesses to this object have to be guarded by THC's CudaFreeMutex
static std::unordered_map<device_list, NcclCommList, c10::hash<device_list>>
    _communicators;

ArrayRef<ncclComm_t> get_communicators(TensorList inputs) {
  static auto get_device = [](const at::Tensor& t) -> int {
    return t.get_device();
  };
  device_list devices = fmap(inputs, get_device);
  auto it = _communicators.find(devices);
  if (it == _communicators.end())
    std::tie(it, std::ignore) = _communicators.emplace(devices, devices);
  return it->second.ref();
}

static inline
void check_tensor(
    const at::Tensor& input,
    const at::optional<at::Tensor>& output,
    int input_multiplier,
    int output_multiplier,
    int64_t ref_numel,
    ScalarType ref_dtype) {

  auto check_one = [&](const at::Tensor &tensor) {
    if (!tensor.is_cuda() || tensor.is_sparse()) {
      throw std::runtime_error(
          "input and output elements have to be cuda dense Tensors");
    }

    if (ref_dtype != tensor.scalar_type()) {
      throw std::runtime_error(
          "all inputs and outputs must be of the same Tensor dtype");
    }

    if (!tensor.is_contiguous()) {
      throw std::runtime_error("all inputs and outputs have to be contiguous");
    }
  };

  check_one(input);

  // all inputs must be same size
  if (input.numel() != ref_numel) {
    throw std::runtime_error(
        "all inputs must have the same number of elements");
  }

  if (output) {
    check_one(*output);

    // inputs and outputs must be on same device respectively
    if (input.get_device() != output->get_device()) {
      throw std::runtime_error("input and output must be on the same device");
    }

    if (output->numel() * output_multiplier != ref_numel * input_multiplier) {
      throw std::runtime_error(
          "output must be of size input_size * size_multiplier");
    }
  }
}

void check_inputs(
    TensorList inputs,
    TensorList outputs,
    int input_multiplier,
    int output_multiplier) {
  // len(inputs) == len(outputs)
  size_t len = inputs.size();

  if (len <= 0) {
    throw std::runtime_error("input sequence can't be empty");
  }

  if (len != outputs.size()) {
    std::stringstream err;
    err << "inputs and outputs sequences have to be of the same length, but got input of length "
        << len << " and output of length " << outputs.size();
    throw std::runtime_error(err.str());
  }

  device_set devices;
  int64_t numel = inputs[0].numel();
  auto dtype = inputs[0].scalar_type();

  for (size_t i = 0; i < len; i++) {
    auto input = inputs[i];
    auto output = outputs[i];

    check_tensor(input, output, input_multiplier, output_multiplier, numel, dtype);

    auto input_device = input.get_device();
    // inputs must be on unique devices
    if (devices.test(input_device)) {
      throw std::runtime_error("inputs must be on unique devices");
    }
    devices.set(input_device);
  }
}

void check_inputs(
    TensorList inputs,
    const at::Tensor& output,
    int root,
    int input_multiplier,
    int output_multiplier) {
  size_t len = inputs.size();

  if (len <= 0) {
    throw std::runtime_error("input sequence can't be empty");
  }

  device_set devices;
  int64_t numel = inputs[0].numel();
  auto dtype = inputs[0].scalar_type();

  for (size_t i = 0; i < len; i++) {
    auto input = inputs[i];

    check_tensor(
      input,
      i == root ? at::optional<at::Tensor>{output} : at::nullopt,
      input_multiplier, output_multiplier, numel, dtype);

    auto input_device = input.get_device();
    // inputs must be on unique devices
    if (devices.test(input_device)) {
      throw std::runtime_error("inputs must be on unique devices");
    }
    devices.set(input_device);
  }
}

} // namespace detail

bool is_available(TensorList tensors) {
#ifdef USE_NCCL
  device_set devices;
  for (auto& tensor : tensors) {
    if (!tensor.is_cuda() || tensor.is_sparse())
      return false;
    if (!tensor.is_contiguous())
      return false;
    auto device = tensor.get_device();
    if (devices[device])
      return false;
    devices[device] = true;
  }
  return true;
#else
  return false;
#endif
}

std::uint64_t version() {
#if defined(NCCL_MAJOR)
  return NCCL_MAJOR * 1000 + NCCL_MINOR * 100 + NCCL_PATCH;
#elif defined(USE_NCCL)
  return 1000;
#else
  return 0;
#endif
}

void get_unique_id(ncclUniqueId& id)
{
#ifdef USE_NCCL
  using namespace torch::cuda::nccl::detail;
  NCCL_CHECK(from_nccl_result(ncclGetUniqueId(to_nccl_unique_id(&id))));
#else
  AT_ERROR("PyTorch built without NCCL support");
#endif
}

ncclComm_t comm_init_rank(int nranks, const ncclUniqueId& comm_id, int rank) {
#ifdef USE_NCCL
  using namespace torch::cuda::nccl::detail;
  ncclComm_t comm;
  ncclUniqueId id = comm_id;
  NCCL_CHECK(from_nccl_result(ncclCommInitRank(
    to_nccl_comm(&comm),
    nranks,
    *(to_nccl_unique_id(&id)),
    rank)));
  return comm;
#else
  return nullptr;
#endif
}

void comm_destroy(ncclComm_t comm)
{
  /*
   * TODO(T30279827) Temporarily disable calling ncclCommDestroy
   * Calling ncclCommDestroy while program exiting is undefined
   * according to Nvidia, and lead to segfault in NCCL 2
   * (whether it is called before or after the CUDA runtime destructor).
   * Temporarily disable it in destructor to avoid segfault.
   * Following up with Nvidia for long term solution.
   */
  return;

#ifdef USE_NCCL
  using namespace torch::cuda::nccl::detail;
  NCCL_CHECK(from_nccl_result(ncclCommDestroy(
    *(to_nccl_comm(&comm)))));
#endif
}

namespace {
// NCCL changed the numerical type used for count between NCCL1 and NCCL2.
// So we use the following struct, which gets the type of the second argument
// of T, if T is a function type, with ncclBcast, to get that type statically
// and programmatically.

template <typename T>
struct GetSecondArgType;

template <typename R, typename Arg0, typename Arg1, typename... Args>
struct GetSecondArgType<R(Arg0, Arg1, Args...)> {
  typedef typename std::decay<Arg1>::type type;
};

constexpr auto count_max =
    std::numeric_limits<GetSecondArgType<decltype(ncclBcast)>::type>::max();
} // namespace

size_t get_max_count() {
  return count_max;
}

void broadcast(
    TensorList tensors,
    const stream_list& streams,
    const comm_list& user_comms) {
#ifdef USE_NCCL
  using namespace torch::cuda::nccl::detail;
  check_inputs(tensors, tensors, 1, 1);
  auto data_type = to_nccl_data_type(tensors[0]);
  int64_t numel = tensors[0].numel();

  const auto comms = user_comms.empty() ? get_communicators(tensors)
                                        : ArrayRef<ncclComm_t>(user_comms);

  AutoNcclGroup nccl_group_guard;
  at::cuda::OptionalCUDAGuard device_guard;
  for (size_t i = 0, num_tensors = tensors.size(); i < num_tensors; i++) {
    int device = tensors[i].get_device();
    device_guard.set_index(device);
    // Default to the current stream
    const auto stream = (streams.empty() || !streams[i])
        ? at::cuda::getCurrentCUDAStream(device).stream()
        : streams[i]->stream();
    TORCH_CHECK(
        static_cast<uint64_t>(numel) <= static_cast<uint64_t>(count_max),
        "Broadcast tensor has ",
        numel,
        " elements, which exceeds the "
        "maximum NCCL supports (",
        count_max,
        ")");
    ncclComm_t comm = comms[i];
    NCCL_CHECK(from_nccl_result(ncclBcast(
        tensors[i].data_ptr(), numel, data_type, 0, *(to_nccl_comm(&comm)), stream)));
  }
#else
  AT_ERROR("PyTorch built without NCCL support");
#endif
}

void reduce(
    const std::vector<at::Tensor>& inputs,
    at::Tensor& output,
    int32_t root,
    int32_t op,
    const stream_list& streams,
    const comm_list& user_comms) {
#ifdef USE_NCCL
  using namespace torch::cuda::nccl::detail;
  TORCH_CHECK(
      root >= 0 && static_cast<size_t>(root) < inputs.size(), "invalid root");

  check_inputs(inputs, output, root, 1, 1);
  const auto len = inputs.size();

  auto data_type = to_nccl_data_type(inputs[0]);

  const auto count = inputs[0].numel();
  auto comms_ref = user_comms.empty() ? get_communicators(inputs)
                                      : ArrayRef<ncclComm_t>(user_comms);

  AutoNcclGroup nccl_group_guard;
  at::cuda::OptionalCUDAGuard device_guard;
  for (size_t i = 0; i < len; i++) {
    int device = inputs[i].device().index();
    device_guard.set_index(device);
    // Default to the current stream
    const auto stream = (streams.empty() || !streams[i])
        ? at::cuda::getCurrentCUDAStream(device).stream()
        : streams[i]->stream();

    ncclComm_t comm = comms_ref[i];
    NCCL_CHECK(from_nccl_result(ncclReduce(
        inputs[i].data_ptr(),
        root == i ? output.data_ptr() : nullptr,
        count,
        data_type,
        to_nccl_red_op(op),
        root,
        *(to_nccl_comm(&comm)),
        stream)));
  }
#else
  AT_ERROR("PyTorch built without NCCL support");
#endif
}

void reduce(
    std::vector<at::Tensor>& inputs,
    int32_t root,
    int32_t op,
    const stream_list& streams,
    const comm_list& user_comms) {
  reduce(inputs, /*output=*/inputs[root], root, op, streams, user_comms);
}

void all_reduce(
    const std::vector<at::Tensor>& inputs,
    std::vector<at::Tensor>& outputs,
    int32_t op,
    const stream_list& streams,
    const comm_list& user_comms) {
#ifdef USE_NCCL
  using namespace torch::cuda::nccl::detail;
  check_inputs(inputs, outputs, 1, 1);
  const auto len = inputs.size();

  auto data_type = to_nccl_data_type(inputs[0]);

  const auto count = inputs[0].numel();
  auto comms_ref = user_comms.empty() ? get_communicators(inputs)
                                      : ArrayRef<ncclComm_t>(user_comms);

  AutoNcclGroup nccl_group_guard;
  at::cuda::OptionalCUDAGuard device_guard;
  for (size_t i = 0; i < len; i++) {
    int device = inputs[i].device().index();
    device_guard.set_index(device);
    // Default to the current stream
    const auto stream = (streams.empty() || !streams[i])
        ? at::cuda::getCurrentCUDAStream(device).stream()
        : streams[i]->stream();

    ncclComm_t comm = comms_ref[i];
    NCCL_CHECK(from_nccl_result(ncclAllReduce(
        inputs[i].data_ptr(),
        outputs[i].data_ptr(),
        count,
        data_type,
        to_nccl_red_op(op),
        *(to_nccl_comm(&comm)),
        stream)));
  }
#else
  AT_ERROR("PyTorch built without NCCL support");
#endif
}

void reduce_scatter(
    const std::vector<at::Tensor>& inputs,
    std::vector<at::Tensor>& outputs,
    int32_t op,
    const stream_list& streams,
    const comm_list& user_comms) {
#ifdef USE_NCCL
  using namespace torch::cuda::nccl::detail;
  const auto len = inputs.size();
  check_inputs(inputs, outputs, 1, len);

  auto data_type = to_nccl_data_type(inputs[0]);

  const auto count = inputs[0].numel() / len;
  auto comms_ref = user_comms.empty() ? get_communicators(inputs)
                                      : ArrayRef<ncclComm_t>(user_comms);

  AutoNcclGroup nccl_group_guard;
  at::cuda::OptionalCUDAGuard device_guard;
  for (size_t i = 0; i < len; i++) {
    int device = inputs[i].device().index();
    device_guard.set_index(device);
    // Default to the current stream
    const auto stream = (streams.empty() || !streams[i])
        ? at::cuda::getCurrentCUDAStream(device).stream()
        : streams[i]->stream();

    ncclComm_t comm = comms_ref[i];
    NCCL_CHECK(from_nccl_result(ncclReduceScatter(
        inputs[i].data_ptr(),
        outputs[i].data_ptr(),
        count,
        data_type,
        to_nccl_red_op(op),
        *(to_nccl_comm(&comm)),
        stream)));
  }
#else
  AT_ERROR("PyTorch built without NCCL support");
#endif
}

void all_gather(
    const std::vector<at::Tensor>& inputs,
    std::vector<at::Tensor>& outputs,
    const stream_list& streams,
    const comm_list& user_comms) {
#ifdef USE_NCCL
  using namespace torch::cuda::nccl::detail;
  const auto len = inputs.size();
  check_inputs(inputs, outputs, len, 1);

  auto data_type = to_nccl_data_type(inputs[0]);

  const auto count = inputs[0].numel();
  auto comms_ref = user_comms.empty() ? get_communicators(inputs)
                                      : ArrayRef<ncclComm_t>(user_comms);

  AutoNcclGroup nccl_group_guard;
  at::cuda::OptionalCUDAGuard device_guard;
  for (size_t i = 0; i < len; i++) {
    int device = inputs[i].device().index();
    device_guard.set_index(device);
    // Default to the current stream
    const auto stream = (streams.empty() || !streams[i])
        ? at::cuda::getCurrentCUDAStream(device).stream()
        : streams[i]->stream();

    ncclComm_t comm = comms_ref[i];
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
      NCCL_CHECK(from_nccl_result(ncclAllGather(
          inputs[i].data_ptr(),
          outputs[i].data_ptr(),
          count,
          data_type,
          *(to_nccl_comm(&comm)),
          stream)));
#else
      NCCL_CHECK(from_nccl_result(ncclAllGather(
          inputs[i].data_ptr(),
          count,
          data_type,
          outputs[i].data_ptr(),
          *(to_nccl_comm(&comm)),
          stream)));
#endif
  }
#else
  AT_ERROR("PyTorch built without NCCL support");
#endif
}
} // namespace nccl
} // namespace cuda
} // namespace torch