1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
|
#include <torch/csrc/python_headers.h>
#include <c10d/FileStore.hpp>
#ifndef _WIN32
#include <c10d/HashStore.hpp>
#include <c10d/TCPStore.hpp>
#include <c10d/ProcessGroupRoundRobin.hpp>
#endif
#include <c10d/ProcessGroup.hpp>
#ifdef USE_C10D_GLOO
#include <c10d/ProcessGroupGloo.hpp>
#endif
#ifdef USE_C10D_NCCL
#include <c10d/ProcessGroupNCCL.hpp>
#endif
#ifdef USE_C10D_MPI
#include <c10d/ProcessGroupMPI.hpp>
#endif
#include <c10d/PrefixStore.hpp>
#include <fmt/format.h>
#include <pybind11/chrono.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/distributed/c10d/comm.h>
#include <torch/csrc/distributed/c10d/reducer.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/utils/object_ptr.h>
#include <torch/csrc/utils/pybind.h>
namespace torch {
namespace distributed {
namespace c10d {
namespace {
#ifdef USE_C10D_GLOO
constexpr char* GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";
#endif
std::vector<std::string> split(char separator, const std::string& string) {
std::vector<std::string> pieces;
std::stringstream ss(string);
std::string item;
while (std::getline(ss, item, separator)) {
pieces.push_back(std::move(item));
}
return pieces;
}
template <typename T>
using shared_ptr_class_ = py::class_<T, std::shared_ptr<T>>;
constexpr auto kDeprecationWarning =
"{} API is being deprecated, please ping "
"https://github.com/pytorch/pytorch/issues/46291 "
"if you see this warning";
// PythonStore is a pybind11 trampoline class to allow a Python
// class to inherit from c10d.Store and implement its interface.
class PythonStore : public ::c10d::Store {
public:
using ::c10d::Store::Store;
// Note: this function manually calls the Python-side overload
// for this function instead of using the PYBIND11_OVERLOAD_XYZ
// macros. This is done so that we can call the Python-side
// function with a std::string instead of a std::vector<uint8_t>.
void set(const std::string& key, const std::vector<uint8_t>& value) override {
pybind11::gil_scoped_acquire gil;
pybind11::function fn =
pybind11::get_overload(static_cast<const ::c10d::Store*>(this), "set");
TORCH_INTERNAL_ASSERT(fn);
// Call function with a py::bytes object for the value.
fn(key,
py::bytes(reinterpret_cast<const char*>(value.data()), value.size()));
}
// Note: this function manually calls the Python-side overload
// for this function instead of using the PYBIND11_OVERLOAD_XYZ
// macros. This is done so that the Python-side function can
// return a py::bytes instead of a std::vector<uint8_t>.
std::vector<uint8_t> get(const std::string& key) override {
pybind11::gil_scoped_acquire gil;
pybind11::function fn =
pybind11::get_overload(static_cast<const ::c10d::Store*>(this), "get");
TORCH_INTERNAL_ASSERT(fn);
// Cast return value from Python to py::bytes, then implicitly
// convert that to a std::string, so that we can construct a
// std::vector<uint8_t>. There is no API for directly accessing
// the contents of the py::bytes object.
std::string str = pybind11::cast<py::bytes>(fn(key));
return std::vector<uint8_t>(str.begin(), str.end());
}
int64_t add(const std::string& key, int64_t value) override {
PYBIND11_OVERLOAD_PURE(int64_t, ::c10d::Store, add, key, value);
}
int64_t getNumKeys() override {
PYBIND11_OVERLOAD_PURE(int64_t, ::c10d::Store, getNumKeys);
}
bool deleteKey(const std::string& key) override {
PYBIND11_OVERLOAD_PURE(bool, ::c10d::Store, deleteKey, key);
}
bool check(const std::vector<std::string>& keys) override {
PYBIND11_OVERLOAD_PURE(bool, ::c10d::Store, check, keys);
}
void wait(const std::vector<std::string>& keys) override {
PYBIND11_OVERLOAD_PURE(void, ::c10d::Store, wait, keys);
}
void wait(
const std::vector<std::string>& keys,
const std::chrono::milliseconds& timeout) override {
PYBIND11_OVERLOAD_PURE(void, ::c10d::Store, wait, keys, timeout);
}
};
// This method is called from DDP's Python API. Its inputs are
// a c10d reducer object, state, and callable comm_hook. State and
// comm_hook inputs are Python objects and this function creates a
// c10d PythonCommHook object using these inputs. It later calls
// register_comm_hook function of the reducer input to register that
// PythonCommHook object.
void _register_comm_hook(
::c10d::Reducer& reducer,
py::object state,
py::object comm_hook) {
reducer.register_comm_hook(std::make_unique<::c10d::PythonCommHook>(
std::move(state), std::move(comm_hook)));
};
PyObject* c10d_init(PyObject* _unused) {
C10_LOG_API_USAGE_ONCE("c10d.python.import");
auto c10d_module = THPObjectPtr(PyImport_ImportModule("torch.distributed"));
if (!c10d_module) {
throw python_error();
}
auto module = py::handle(c10d_module).cast<py::module>();
module.def(
"_register_comm_hook",
&_register_comm_hook,
py::arg("ddp_model"),
py::arg("state"),
py::arg("comm_hook"));
shared_ptr_class_<::c10d::GradBucket>(module, "_GradBucket")
.def(py::init<std::vector<Tensor>&>(), py::arg("tensors"))
.def(
"get_tensors",
&::c10d::GradBucket::getTensors,
py::call_guard<py::gil_scoped_release>(),
R"(
``get_tensors`` returns a list of ``torch.Tensor``. Each tensor in
the list refers to the replica on each device. There will be multiple
replicas only in the case of single process multiple device mode. In
the single process single device mode, this list would consist of only
a single tensor.
)");
shared_ptr_class_<::c10d::Reducer>(module, "Reducer")
.def(
py::init<
std::vector<std::vector<torch::autograd::Variable>>,
std::vector<std::vector<size_t>>,
std::shared_ptr<::c10d::ProcessGroup>,
std::vector<std::vector<bool>>,
int64_t,
bool,
bool>(),
py::arg("replicas"),
py::arg("bucket_indices"),
py::arg("process_group"),
py::arg("expect_sparse_gradients") = std::vector<std::vector<bool>>(),
py::arg("bucket_bytes_cap") = ::c10d::kDefaultBucketBytesCap,
py::arg("find_unused_parameters") = false,
py::arg("gradient_as_bucket_view") = false,
py::call_guard<py::gil_scoped_release>())
.def(
"initialize_buckets",
&::c10d::Reducer::initialize_buckets,
py::call_guard<py::gil_scoped_release>())
.def(
"prepare_for_backward",
&::c10d::Reducer::prepare_for_backward,
py::call_guard<py::gil_scoped_release>())
.def(
"prepare_for_backward",
[](::c10d::Reducer& reducer, const torch::autograd::Variable& output)
-> void { reducer.prepare_for_backward({output}); },
py::call_guard<py::gil_scoped_release>())
.def("get_backward_stats", &::c10d::Reducer::get_backward_stats)
.def(
"_rebuild_buckets",
&::c10d::Reducer::rebuild_buckets,
py::call_guard<py::gil_scoped_release>())
.def(
"get_bucket_tensors",
&::c10d::Reducer::get_bucket_tensors,
py::call_guard<py::gil_scoped_release>())
.def(
"_push_all_rebuilt_params",
&::c10d::Reducer::push_rebuilt_params_for_all_indices,
py::call_guard<py::gil_scoped_release>())
.def(
"_set_forward_pass_work_handle",
&::c10d::Reducer::set_forward_pass_work_handle,
py::call_guard<py::gil_scoped_release>())
.def(
"_get_local_used_maps",
&::c10d::Reducer::get_local_used_maps_on_device);
py::enum_<::c10d::ReduceOp>(module, "ReduceOp", R"(
An enum-like class for available reduction operations: ``SUM``, ``PRODUCT``,
``MIN``, ``MAX``, ``BAND``, ``BOR``, and ``BXOR``.
Note that ``BAND``, ``BOR``, and ``BXOR`` reductions are not available when
using the ``NCCL`` backend.
The values of this class can be accessed as attributes, e.g., ``ReduceOp.SUM``.
They are used in specifying strategies for reduction collectives, e.g.,
:func:`reduce`, :func:`all_reduce_multigpu`, etc.)")
.value("SUM", ::c10d::ReduceOp::SUM)
.value("PRODUCT", ::c10d::ReduceOp::PRODUCT)
.value("MIN", ::c10d::ReduceOp::MIN)
.value("MAX", ::c10d::ReduceOp::MAX)
.value("BAND", ::c10d::ReduceOp::BAND)
.value("BOR", ::c10d::ReduceOp::BOR)
.value("BXOR", ::c10d::ReduceOp::BXOR);
py::class_<::c10d::BroadcastOptions>(module, "BroadcastOptions")
.def(py::init<>())
.def_readwrite("rootRank", &::c10d::BroadcastOptions::rootRank)
.def_readwrite("rootTensor", &::c10d::BroadcastOptions::rootTensor)
.def_readwrite("timeout", &::c10d::BroadcastOptions::timeout);
py::class_<::c10d::AllreduceOptions>(module, "AllreduceOptions")
.def(py::init<>())
.def_readwrite("reduceOp", &::c10d::AllreduceOptions::reduceOp)
.def_readwrite("timeout", &::c10d::AllreduceOptions::timeout);
py::class_<::c10d::AllreduceCoalescedOptions>(
module, "AllreduceCoalescedOptions")
.def(py::init<>())
.def_readwrite("reduceOp", &::c10d::AllreduceCoalescedOptions::reduceOp)
.def_readwrite("timeout", &::c10d::AllreduceCoalescedOptions::timeout);
py::class_<::c10d::ReduceOptions>(module, "ReduceOptions")
.def(py::init<>())
.def_readwrite("reduceOp", &::c10d::ReduceOptions::reduceOp)
.def_readwrite("rootRank", &::c10d::ReduceOptions::rootRank)
.def_readwrite("rootTensor", &::c10d::ReduceOptions::rootTensor)
.def_readwrite("timeout", &::c10d::ReduceOptions::timeout);
py::class_<::c10d::AllgatherOptions>(module, "AllgatherOptions")
.def(py::init<>())
.def_readwrite("timeout", &::c10d::AllgatherOptions::timeout);
py::class_<::c10d::GatherOptions>(module, "GatherOptions")
.def(py::init<>())
.def_readwrite("rootRank", &::c10d::GatherOptions::rootRank)
.def_readwrite("timeout", &::c10d::GatherOptions::timeout);
py::class_<::c10d::ScatterOptions>(module, "ScatterOptions")
.def(py::init<>())
.def_readwrite("rootRank", &::c10d::ScatterOptions::rootRank)
.def_readwrite("timeout", &::c10d::ScatterOptions::timeout);
py::class_<::c10d::ReduceScatterOptions>(module, "ReduceScatterOptions")
.def(py::init<>())
.def_readwrite("reduceOp", &::c10d::ReduceScatterOptions::reduceOp)
.def_readwrite("timeout", &::c10d::ReduceScatterOptions::timeout);
py::class_<::c10d::BarrierOptions>(module, "BarrierOptions")
.def(py::init<>())
.def_readwrite("timeout", &::c10d::BarrierOptions::timeout);
py::class_<::c10d::AllToAllOptions>(module, "AllToAllOptions")
.def(py::init<>())
.def_readwrite("timeout", &::c10d::AllToAllOptions::timeout);
auto store =
py::class_<::c10d::Store, std::shared_ptr<::c10d::Store>, PythonStore>(
module, "Store",
R"(
Base class for all store implementations, such as the 3 provided by PyTorch
distributed: (:class:`~torch.distributed.TCPStore`, :class:`~torch.distributed.FileStore`,
and :class:`~torch.distributed.HashStore`).
)")
// Default constructor.
.def(py::init<>())
// Convert from std::string to std::vector<uint8>.
.def(
"set",
[](::c10d::Store& store,
const std::string& key,
const std::string& value) {
std::vector<uint8_t> value_(value.begin(), value.end());
store.set(key, value_);
},
py::call_guard<py::gil_scoped_release>(),
R"(
Inserts the key-value pair into the store based on the supplied ``key`` and
``value``. If ``key`` already exists in the store, it will overwrite the old
value with the new supplied ``value``.
Arguments:
key (str): The key to be added to the store.
value (str): The value associated with ``key`` to be added to the store.
Example::
>>> import torch.distributed as dist
>>> store = dist.TCPStore("127.0.0.1", 0, true, timedelta(seconds=30))
>>> store.set("first_key", "first_value")
>>> # Should return "first_value"
>>> store.get("first_key")
)")
// Convert from std::vector<uint8_t> to py::bytes.
// The returned value is not guaranteed to be valid UTF-8.
.def(
"get",
[](::c10d::Store& store, const std::string& key) -> py::bytes {
auto value = store.get(key);
return py::bytes(
reinterpret_cast<char*>(value.data()), value.size());
},
py::call_guard<py::gil_scoped_release>(),
R"(
Retrieves the value associated with the given ``key`` in the store. If ``key`` is not
present in the store, the function will wait for ``timeout``, which is defined
when initializing the store, before throwing an exception.
Arguments:
key (str): The function will return the value associated with this key.
Returns:
Value associated with ``key`` if ``key`` is in the store.
Example::
>>> import torch.distributed as dist
>>> store = dist.TCPStore("127.0.0.1", 0, true, timedelta(seconds=30))
>>> store.set("first_key", "first_value")
>>> # Should return "first_value"
>>> store.get("first_key")
)")
.def(
"add",
&::c10d::Store::add,
py::call_guard<py::gil_scoped_release>(),
R"(
The first call to add for a given ``key`` creates a counter associated
with ``key`` in the store, initialized to ``amount``. Subsequent calls to add
with the same ``key`` increment the counter by the specified ``amount``.
Calling :meth:`~torch.distributed.store.add` with a key that has already
been set in the store by :meth:`~torch.distributed.store.set` will result
in an exception.
Arguments:
key (str): The key in the store whose counter will be incremented.
amount (int): The quantity by which the counter will be incremented.
Example::
>>> import torch.distributed as dist
>>> # Using TCPStore as an example, other store types can also be used
>>> store = dist.TCPStore("127.0.0.1", 0, true, timedelta(seconds=30))
>>> store.add("first_key", 1)
>>> store.add("first_key", 6)
>>> # Should return 7
>>> store.get("first_key")
)")
.def(
"delete_key",
&::c10d::Store::deleteKey,
py::call_guard<py::gil_scoped_release>(),
R"(
Deletes the key-value pair associated with ``key`` from the store. Returns
`true` if the key was successfully deleted, and `false` if it was not.
.. warning::
The ``delete_key`` API is only supported by the :class:`~torch.distributed.TCPStore`. Using this API
with the :class:`~torch.distributed.FileStore` or :class:`~torch.distributed.HashStore` will result in an exception.
Arguments:
key (str): The key to be deleted from the store
Returns:
`true` if ``key`` was deleted, otherwise `false`.
Example::
>>> import torch.distributed as dist
>>> store = dist.TCPStore("127.0.0.1", 0, true, timedelta(seconds=30))
>>> store.set("first_key")
>>> # This should return true
>>> store.delete_key("first_key")
>>> # This should return false
>>> store.delete_key("bad_key")
)")
.def(
"num_keys",
&::c10d::Store::getNumKeys,
py::call_guard<py::gil_scoped_release>(),
R"(
Returns the number of keys set in the store. Note that this number will typically
be one greater than the number of keys added by :meth:`~torch.distributed.store.set`
and :meth:`~torch.distributed.store.add` since one key is used to coordinate all
the workers using the store.
.. warning::
The ``num_keys`` API is only supported by the :class:`~torch.distributed.TCPStore`. Using this API
with the :class:`~torch.distributed.FileStore` or :class:`~torch.distributed.HashStore` will result in an exception.
Returns:
The number of keys present in the store.
Example::
>>> import torch.distributed as dist
>>> store = dist.TCPStore("127.0.0.1", 0, true, timedelta(seconds=30))
>>> store.set("first_key", "first_value")
>>> # This should return 2
>>> store.num_keys()
)")
.def(
"set_timeout",
&::c10d::Store::setTimeout,
py::call_guard<py::gil_scoped_release>(),
R"(
Sets the store's default timeout. This timeout is used during initialization and in
:meth:`~torch.distributed.store.wait` and :meth:`~torch.distributed.store.get`.
Arguments:
timeout (timedelta): timeout to be set in the store.
Example::
>>> import torch.distributed as dist
>>> # Using TCPStore as an example, other store types can also be used
>>> store = dist.TCPStore("127.0.0.1", 0, true, timedelta(seconds=30))
>>> store.set_timeout(timedelta(seconds=10))
>>> # This will throw an exception after 10 seconds
>>> store.wait(["bad_key"])
)")
.def(
"wait",
[](::c10d::Store& store, const std::vector<std::string>& keys) {
store.wait(keys);
},
py::call_guard<py::gil_scoped_release>(),
R"(
Waits for each key in ``keys`` to be added to the store. If not all keys are
set before the ``timeout`` (set during store initialization), then ``wait``
will throw an exception.
Arguments:
keys (list): List of keys on which to wait until they are set in the store.
Example::
>>> import torch.distributed as dist
>>> # Using TCPStore as an example, other store types can also be used
>>> store = dist.TCPStore("127.0.0.1", 0, true, timedelta(seconds=30))
>>> # This will throw an exception after 30 seconds
>>> store.wait(["bad_key"])
)")
.def(
"wait",
[](::c10d::Store& store,
const std::vector<std::string>& keys,
const std::chrono::milliseconds& timeout) {
store.wait(keys, timeout);
},
py::call_guard<py::gil_scoped_release>(),
R"(
Waits for each key in ``keys`` to be added to the store, and throws an exception
if the keys have not been set by the supplied ``timeout``.
Arguments:
keys (list): List of keys on which to wait until they are set in the store.
timeout (timedelta): Time to wait for the keys to be added before throwing an exception.
Example::
>>> import torch.distributed as dist
>>> # Using TCPStore as an example, other store types can also be used
>>> store = dist.TCPStore("127.0.0.1", 0, true, timedelta(seconds=30))
>>> # This will throw an exception after 10 seconds
>>> store.wait(["bad_key"], timedelta(seconds=10))
)");
shared_ptr_class_<::c10d::FileStore>(module, "FileStore", store,
R"(
A store implementation that uses a file to store the underlying key-value pairs.
Arguments:
file_name (str): path of the file in which to store the key-value pairs
world_size (int): The total number of processes using the store
Example::
>>> import torch.distributed as dist
>>> store1 = dist.FileStore("/tmp/filestore", 2)
>>> store2 = dist.FileStore("/tmp/filestore", 2)
>>> # Use any of the store methods from either the client or server after initialization
>>> store1.set("first_key", "first_value")
>>> store2.get("first_key")
)")
.def(py::init<const std::string&, int>());
#ifndef _WIN32
shared_ptr_class_<::c10d::HashStore>(module, "HashStore", store,
R"(
A thread-safe store implementation based on an underlying hashmap. This store can be used
within the same process (for example, by other threads), but cannot be used across processes.
Example::
>>> import torch.distributed as dist
>>> store = dist.HashStore()
>>> # store can be used from other threads
>>> # Use any of the store methods after initialization
>>> store.set("first_key", "first_value")
)")
.def(py::init<>());
shared_ptr_class_<::c10d::TCPStore>(module, "TCPStore", store,
R"(
A TCP-based distributed key-value store implementation. The server store holds
the data, while the client stores can connect to the server store over TCP and
perform actions such as :meth:`~torch.distributed.store.set` to insert a key-value
pair, :meth:`~torch.distributed.store.get` to retrieve a key-value pair, etc.
Arguments:
host_name (str): The hostname or IP Address the server store should run on.
port (int): The port on which the server store should listen for incoming requests.
world_size (int): The total number of store users (number of clients + 1 for the server).
is_master (bool): True when initializing the server store, False for client stores.
timeout (timedelta): Timeout used by the store during initialization and for methods such as :meth:`~torch.distributed.store.get` and :meth:`~torch.distributed.store.wait`.
Example::
>>> import torch.distributed as dist
>>> server_store = dist.TCPStore("127.0.0.1", 0, true, timedelta(seconds=30))
>>> client_store = dist.TCPStore("127.0.0.1", 0, false)
>>> # Use any of the store methods from either the client or server after initialization
>>> server_store.set("first_key", "first_value")
>>> client_store.get("first_key")
)")
.def(
py::init<
const std::string&,
int,
int,
bool,
std::chrono::milliseconds>(),
py::arg("host_name"),
py::arg("port"),
py::arg("world_size"),
py::arg("is_master"),
py::arg("timeout") =
std::chrono::milliseconds(::c10d::Store::kDefaultTimeout));
#endif
shared_ptr_class_<::c10d::PrefixStore>(module, "PrefixStore", store,
R"(
A wrapper around any of the 3 key-value stores (:class:`~torch.distributed.TCPStore`,
:class:`~torch.distributed.FileStore`, and :class:`~torch.distributed.HashStore`)
that adds a prefix to each key inserted to the store.
Arguments:
prefix (str): The prefix string that is prepended to each key before being inserted into the store.
store (torch.distributed.store): A store object that forms the underlying key-value store.
)")
.def(py::init<const std::string&, std::shared_ptr<::c10d::Store>>());
auto processGroup =
shared_ptr_class_<::c10d::ProcessGroup>(module, "ProcessGroup")
.def("rank", &::c10d::ProcessGroup::getRank)
.def("size", &::c10d::ProcessGroup::getSize)
.def(
"broadcast",
&::c10d::ProcessGroup::broadcast,
py::arg("tensors"),
py::arg("opts") = ::c10d::BroadcastOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"broadcast",
[](::c10d::ProcessGroup& pg, at::Tensor& x, int rootRank) {
::c10d::BroadcastOptions opts;
opts.rootRank = rootRank;
std::vector<at::Tensor> xs = {x};
return pg.broadcast(xs, opts);
},
py::arg("tensor"),
py::arg("root"),
py::call_guard<py::gil_scoped_release>())
.def(
"allreduce",
&::c10d::ProcessGroup::allreduce,
py::arg("tensors"),
py::arg("opts") = ::c10d::AllreduceOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"allreduce",
[](::c10d::ProcessGroup& pg,
std::vector<at::Tensor>& xs,
::c10d::ReduceOp op) {
::c10d::AllreduceOptions opts;
opts.reduceOp = op;
return pg.allreduce(xs, opts);
},
py::arg("tensors"),
py::arg("op") = ::c10d::ReduceOp::SUM,
py::call_guard<py::gil_scoped_release>())
.def(
"allreduce",
[](::c10d::ProcessGroup& pg, at::Tensor& x, ::c10d::ReduceOp op) {
::c10d::AllreduceOptions opts;
opts.reduceOp = op;
std::vector<at::Tensor> xs = {x};
return pg.allreduce(xs, opts);
},
py::arg("tensor"),
py::arg("op") = ::c10d::ReduceOp::SUM,
py::call_guard<py::gil_scoped_release>())
.def(
"allreduce_coalesced",
[](::c10d::ProcessGroup& pg,
std::vector<at::Tensor>& xs,
::c10d::AllreduceCoalescedOptions opts) {
return pg.allreduce_coalesced(xs, opts);
},
py::arg("tensors"),
py::arg("opts") = ::c10d::AllreduceCoalescedOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"reduce",
&::c10d::ProcessGroup::reduce,
py::arg("tensors"),
py::arg("opts") = ::c10d::ReduceOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"reduce",
[](::c10d::ProcessGroup& pg,
at::Tensor& x,
int rootRank,
::c10d::ReduceOp op) {
::c10d::ReduceOptions opts;
opts.reduceOp = op;
opts.rootRank = rootRank;
std::vector<at::Tensor> xs = {x};
return pg.reduce(xs, opts);
},
py::arg("tensor"),
py::arg("root"),
py::arg("op") = ::c10d::ReduceOp::SUM,
py::call_guard<py::gil_scoped_release>())
.def(
"allgather",
&::c10d::ProcessGroup::allgather,
py::arg("output_tensors"),
py::arg("input_tensors"),
py::arg("opts") = ::c10d::AllgatherOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"allgather",
[](::c10d::ProcessGroup& pg,
std::vector<at::Tensor>& output,
at::Tensor& input) {
std::vector<std::vector<at::Tensor>> outputs = {output};
std::vector<at::Tensor> inputs = {input};
return pg.allgather(
outputs, inputs, ::c10d::AllgatherOptions());
},
py::arg("output_tensors"),
py::arg("input_tensor"),
py::call_guard<py::gil_scoped_release>())
.def(
"allgather_coalesced",
&::c10d::ProcessGroup::allgather_coalesced,
py::arg("output_lists"),
py::arg("input_list"),
py::arg("opts") = ::c10d::AllgatherOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"gather",
&::c10d::ProcessGroup::gather,
py::arg("output_tensors"),
py::arg("input_tensors"),
py::arg("opts") = ::c10d::GatherOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"gather",
[](::c10d::ProcessGroup& pg,
std::vector<at::Tensor>& output,
at::Tensor& input,
int rootRank) {
::c10d::GatherOptions opts;
opts.rootRank = rootRank;
std::vector<std::vector<at::Tensor>> outputs = {output};
std::vector<at::Tensor> inputs = {input};
return pg.gather(outputs, inputs, opts);
},
py::arg("output_tensors"),
py::arg("input_tensor"),
py::arg("root"),
py::call_guard<py::gil_scoped_release>())
.def(
"scatter",
&::c10d::ProcessGroup::scatter,
py::arg("output_tensors"),
py::arg("input_tensors"),
py::arg("opts") = ::c10d::ScatterOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"scatter",
[](::c10d::ProcessGroup& pg,
at::Tensor& output,
std::vector<at::Tensor>& input,
int rootRank) {
::c10d::ScatterOptions opts;
opts.rootRank = rootRank;
std::vector<std::vector<at::Tensor>> inputs = {input};
std::vector<at::Tensor> outputs = {output};
return pg.scatter(outputs, inputs, opts);
},
py::arg("output_tensor"),
py::arg("input_tensors"),
py::arg("root"),
py::call_guard<py::gil_scoped_release>())
.def(
"reduce_scatter",
&::c10d::ProcessGroup::reduce_scatter,
py::arg("output_tensors"),
py::arg("input_tensors"),
py::arg("opts") = ::c10d::ReduceScatterOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"reduce_scatter",
[](::c10d::ProcessGroup& pg,
at::Tensor& output,
std::vector<at::Tensor>& input) {
std::vector<at::Tensor> outputs = {output};
std::vector<std::vector<at::Tensor>> inputs = {input};
return pg.reduce_scatter(
outputs, inputs, ::c10d::ReduceScatterOptions());
},
py::arg("output_tensors"),
py::arg("input_tensor"),
py::call_guard<py::gil_scoped_release>())
.def(
"alltoall_base",
&::c10d::ProcessGroup::alltoall_base,
py::arg("output_tensor"),
py::arg("input_tensor"),
py::arg("output_split_sizes"),
py::arg("input_split_sizes"),
py::arg("opts") = ::c10d::AllToAllOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"alltoall_base",
[](::c10d::ProcessGroup& pg,
at::Tensor& output,
at::Tensor& input,
std::vector<int64_t> outputSplitSizes,
std::vector<int64_t> inputSplitSizes) {
return pg.alltoall_base(
output,
input,
outputSplitSizes,
inputSplitSizes,
::c10d::AllToAllOptions());
},
py::arg("output"),
py::arg("input"),
py::arg("output_split_sizes"),
py::arg("input_split_sizes"),
py::call_guard<py::gil_scoped_release>())
.def(
"alltoall",
&::c10d::ProcessGroup::alltoall,
py::arg("output_tensor"),
py::arg("input_tensor"),
py::arg("opts") = ::c10d::AllToAllOptions(),
py::call_guard<py::gil_scoped_release>())
.def(
"alltoall",
[](::c10d::ProcessGroup& pg,
std::vector<at::Tensor>& output,
std::vector<at::Tensor>& input) {
return pg.alltoall(output, input, ::c10d::AllToAllOptions());
},
py::arg("output"),
py::arg("input"),
py::call_guard<py::gil_scoped_release>())
.def(
"send",
&::c10d::ProcessGroup::send,
py::call_guard<py::gil_scoped_release>())
.def(
"recv",
&::c10d::ProcessGroup::recv,
py::call_guard<py::gil_scoped_release>())
.def(
"recv_anysource",
&::c10d::ProcessGroup::recvAnysource,
py::call_guard<py::gil_scoped_release>())
.def(
"barrier",
&::c10d::ProcessGroup::barrier,
py::arg("opts") = ::c10d::BarrierOptions(),
py::call_guard<py::gil_scoped_release>());
#ifndef _WIN32
module.def(
"_round_robin_process_groups",
[](std::vector<std::shared_ptr<::c10d::ProcessGroup>> processGroups)
-> std::shared_ptr<::c10d::ProcessGroup> {
if (processGroups.size() == 0) {
throw std::invalid_argument("Specify at least 1 process group");
}
const auto& first = processGroups.front();
return std::make_shared<::c10d::ProcessGroupRoundRobin>(
first->getRank(), first->getSize(), std::move(processGroups));
},
py::arg("process_groups"),
py::call_guard<py::gil_scoped_release>());
#endif
#ifdef USE_C10D_GLOO
auto processGroupGloo = shared_ptr_class_<::c10d::ProcessGroupGloo>(
module, "ProcessGroupGloo", processGroup);
shared_ptr_class_<::gloo::transport::Device>(processGroupGloo, "Device");
shared_ptr_class_<::c10d::ProcessGroupGloo::Options>(
processGroupGloo, "Options")
.def(py::init<>())
.def_readwrite("devices", &::c10d::ProcessGroupGloo::Options::devices)
.def_readwrite("timeout", &::c10d::ProcessGroupGloo::Options::timeout)
.def_readwrite("threads", &::c10d::ProcessGroupGloo::Options::threads);
processGroupGloo.def_static(
"create_device",
[](const std::string& hostname, const std::string& interface)
-> std::shared_ptr<::gloo::transport::Device> {
if (!hostname.empty()) {
return ::c10d::ProcessGroupGloo::createDeviceForHostname(hostname);
}
if (!interface.empty()) {
return ::c10d::ProcessGroupGloo::createDeviceForInterface(interface);
}
throw std::invalid_argument(
"Specify either `hostname` or `interface` argument.");
},
py::arg("hostname") = "",
py::arg("interface") = "");
processGroupGloo
.def(py::init<
const std::shared_ptr<::c10d::Store>&,
int,
int,
::c10d::ProcessGroupGloo::Options>(),
py::call_guard<py::gil_scoped_release>())
.def(
py::init([](const std::shared_ptr<::c10d::Store>& store,
int rank,
int size,
std::chrono::milliseconds timeout) {
::c10d::ProcessGroupGloo::Options options;
// Use interfaces listed in "GLOO_SOCKET_IFNAME", if set.
char* ifnameEnv = getenv(GLOO_SOCKET_IFNAME_ENV);
if (ifnameEnv) {
for (const auto& iface : split(',', ifnameEnv)) {
options.devices.push_back(
::c10d::ProcessGroupGloo::createDeviceForInterface(iface));
}
} else {
// If no hostname is specified, this function looks up
// the machine's hostname and returns a device instance
// associated with the address that the hostname resolves to.
options.devices.push_back(
::c10d::ProcessGroupGloo::createDefaultDevice());
}
options.timeout = timeout;
options.threads = options.devices.size() * 2;
return std::make_shared<::c10d::ProcessGroupGloo>(
store, rank, size, options);
}),
py::arg("store"),
py::arg("rank"),
py::arg("size"),
py::arg("timeout") = std::chrono::milliseconds(10 * 1000), // NOLINT
py::call_guard<py::gil_scoped_release>());
#endif
#ifdef USE_C10D_NCCL
auto processGroupNCCL = shared_ptr_class_<::c10d::ProcessGroupNCCL>(
module, "ProcessGroupNCCL", processGroup)
.def(py::init<
const std::shared_ptr<::c10d::Store>&,
int,
int,
::c10d::ProcessGroupNCCL::Options>(),
py::call_guard<py::gil_scoped_release>())
.def(
py::init([](const std::shared_ptr<::c10d::Store>& store,
int rank,
int size,
const std::chrono::milliseconds& timeout){
::c10d::ProcessGroupNCCL::Options options;
options.isHighPriorityStream = false;
options.opTimeout = timeout;
return std::make_shared<::c10d::ProcessGroupNCCL>(
store, rank, size, options);
}),
py::arg("store"),
py::arg("rank"),
py::arg("size"),
py::arg("timeout") = std::chrono::milliseconds(
::c10d::ProcessGroupNCCL::kProcessGroupNCCLOpTimeoutMillis),
py::call_guard<py::gil_scoped_release>());
py::class_<::c10d::ProcessGroupNCCL::Options>(processGroupNCCL, "Options")
.def(py::init<>())
.def_readwrite("is_high_priority", &::c10d::ProcessGroupNCCL::Options::isHighPriorityStream)
.def_readwrite("op_timeout", &::c10d::ProcessGroupNCCL::Options::opTimeout);
#endif
#ifdef USE_C10D_MPI
auto processGroupMPI = shared_ptr_class_<::c10d::ProcessGroupMPI>(
module, "ProcessGroupMPI", processGroup);
// Define static create function instead of a constructor, because
// this function may return null. This happens if this process is not
// part of a sub group that is to be created.
processGroupMPI.def_static(
"create",
[](std::vector<int> ranks) {
return ::c10d::ProcessGroupMPI::createProcessGroupMPI(ranks);
},
py::call_guard<py::gil_scoped_release>());
#endif
shared_ptr_class_<::c10d::ProcessGroup::Work>(module, "Work")
.def("is_completed", &::c10d::ProcessGroup::Work::isCompleted)
.def(
"is_success",
[](::c10d::ProcessGroup::Work& work) -> bool {
TORCH_WARN_ONCE(fmt::format(
kDeprecationWarning, "ProcessGroup::Work::is_success"));
return work.isSuccess();
})
.def(
"exception",
[](::c10d::ProcessGroup::Work& work) -> std::exception_ptr {
TORCH_WARN_ONCE(fmt::format(
kDeprecationWarning, "ProcessGroup::Work::exception"));
return work.exception();
})
.def(
"source_rank",
[](::c10d::ProcessGroup::Work& work) -> int {
TORCH_WARN_ONCE(fmt::format(
kDeprecationWarning, "ProcessGroup::Work::source_rank"));
return work.sourceRank();
})
.def("_source_rank", &::c10d::ProcessGroup::Work::sourceRank)
.def(
"result",
[](::c10d::ProcessGroup::Work& work) -> std::vector<at::Tensor> {
return work.result();
})
.def(
"synchronize",
[](::c10d::ProcessGroup::Work& work) -> void {
TORCH_WARN_ONCE(fmt::format(
kDeprecationWarning, "ProcessGroup::Work::synchronize"));
work.synchronize();
})
.def(
"wait",
&::c10d::ProcessGroup::Work::wait,
py::arg("timeout") = kNoTimeout,
py::call_guard<py::gil_scoped_release>())
.def(
"get_future",
[](::c10d::ProcessGroup::Work& work)
-> std::shared_ptr<jit::PythonFutureWrapper> {
return std::make_shared<jit::PythonFutureWrapper>(work.getFuture());
},
R"(
Returns:
A ``torch._C.Future`` object which is associated with the completion of
the ``ProcessGroup::Work``. As an example, a future object can be retrieved
by ``fut = process_group.allreduce(tensors).get_future()``.
Example::
Below is an example of a simple allreduce DDP communication hook that uses
``get_future` API to retrieve a Future associated with the completion of
``allreduce`` work.
>>> def allreduce(state: object, bucket: dist._GradBucket): -> torch._C.Future
>>> tensors = [t / process_group.world_size for t in bucket.get_tensors()]
>>> work = process_group.allreduce(tensors)
>>> return work.get_future()
>>> ddp_model._register_comm_hook(state = None, hook = allreduce)
.. warning ::
``get_future`` API supports only NCCL backend and single-process single-device mode.
The ``torch._C.Future`` object returned by this API can be used in
``DistributedDataParallel._register_comm_hook``, but it is subject to some subtle
differences compared to ``torch.futures.Future`` due to compromises made for performance
reasons.
In the example above, ``allreduce`` work will be done on GPU using NCCL backend,
``fut.wait()`` will return after synchronizing the appropriate NCCL streams
with PyTorch's default device streams to ensure we can have asynchronous CUDA
execution and it does not wait for the entire operation to complete on GPU. Note that
``FutureNCCL`` does not support ``NCCL_BLOCKING_WAIT`` flag or NCCL's ``barrier()``.
In addition, if a callback function was added by ``fut.then()``, it will wait until
``WorkNCCL``'s NCCL streams synchronize with ``ProcessGroupNCCL``'s dedicated callback
stream and invoke the callback inline after running the callback on the callback stream.
``fut.then()`` will return another ``FutureNCCL`` that holds the return value of the
callback and a ``CUDAEvent`` that recorded the callback stream.
Note that ``fut.done()`` returns if the enire operation is completed on the GPU.
)");
module.def(
"_compute_bucket_assignment_by_size",
&::c10d::compute_bucket_assignment_by_size,
py::arg("tensors"),
py::arg("bucket_size"),
py::arg("expect_sparse_gradient") = std::vector<bool>(),
py::arg("tensor_indices") = std::vector<int64_t>(),
py::call_guard<py::gil_scoped_release>());
module.def(
"_broadcast_coalesced",
// Define a lambda such that the pybind11 prototype can take a std::vector
// for the tensor list argument, but still pass it to the underlying
// function as a c10::ArrayRef.
[](std::shared_ptr<::c10d::ProcessGroup> process_group,
std::vector<at::Tensor> tensors, // NOLINT
size_t buffer_size,
int rank) {
broadcast_coalesced(
std::move(process_group), tensors, buffer_size, rank);
},
py::arg("process_group"),
py::arg("tensors"),
py::arg("buffer_size"),
// The source of truth rank to broadcast the tensors from.
py::arg("src") = 0,
py::call_guard<py::gil_scoped_release>());
module.def(
"_test_python_store",
// Define a function that takes a c10d store and runs a few tests.
// This is used by the PythonStore tests, which we cannot test from the
// Python side of the world. Calling Python functions on a Python object
// completely bypasses pybind11. We need to test that the overloaded
// functions call into Python and behave like we expect.
[](std::shared_ptr<::c10d::Store> store) {
auto add = [&store](const std::string& key, int64_t value) {
store->add(key, value);
};
auto set = [&store](const std::string& key, const std::string& value) {
std::vector<uint8_t> value_(value.begin(), value.end());
store->set(key, value_);
};
auto get = [&store](const std::string& key) {
auto value = store->get(key);
return std::string(value.begin(), value.end());
};
add("key", 1);
add("key", 2);
add("key", 3);
set("key0", "value0");
add("key3", 1);
set("key1", "value1");
add("key3", 2);
set("key2", "value2");
add("key3", 3);
add("key3", 4);
add("key3", 3);
add("key3", 2);
if (get("key") != "6") {
throw std::runtime_error("assertion failed");
}
if (get("key0") != "value0") {
throw std::runtime_error("assertion failed");
}
if (get("key1") != "value1") {
throw std::runtime_error("assertion failed");
}
if (get("key2") != "value2") {
throw std::runtime_error("assertion failed");
}
if (get("key3") != "15") {
throw std::runtime_error("assertion failed");
}
},
py::call_guard<py::gil_scoped_release>());
module.attr("_DEFAULT_FIRST_BUCKET_BYTES") = ::c10d::kDefaultFirstBucketBytes;
Py_RETURN_TRUE;
}
#undef PROCESS_GROUP_DEPRECATION_WARNING
} // namespace
// c10d methods on torch._C
static PyMethodDef methods[] = { // NOLINT
{"_c10d_init", (PyCFunction)c10d_init, METH_NOARGS, nullptr},
{nullptr, nullptr, 0, nullptr}};
PyMethodDef* python_functions() {
return methods;
}
} // namespace c10d
} // namespace distributed
} // namespace torch
|