1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
|
#include <torch/csrc/distributed/c10d/reducer.h>
#include <functional>
#include <c10/core/DeviceGuard.h>
#include <c10/core/StreamGuard.h>
#include <c10/util/Exception.h>
#include <c10/util/hash.h>
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/function_hook.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/autograd/utils/grad_layout_contract.h>
#include <torch/csrc/autograd/utils/lambda_post_hook.h>
#include <torch/csrc/distributed/c10d/comm.h>
#include <torch/csrc/utils/memory.h>
namespace c10d {
namespace {
inline int64_t current_time_in_nanos() {
return torch::autograd::profiler::getTime();
}
constexpr int kUnsetDivFactor = -1;
} // namespace
Reducer::Reducer(
std::vector<std::vector<torch::autograd::Variable>> replicas,
std::vector<std::vector<size_t>> bucket_indices,
std::shared_ptr<c10d::ProcessGroup> process_group,
std::vector<std::vector<bool>> expect_sparse_gradients,
int64_t bucket_bytes_cap,
bool find_unused_parameters,
bool gradient_as_bucket_view)
: replicas_(std::move(replicas)),
process_group_(std::move(process_group)),
expect_sparse_gradients_(std::move(expect_sparse_gradients)),
expect_autograd_hooks_(false),
require_finalize_(false),
next_bucket_(0),
has_marked_unused_parameters_(false),
find_unused_parameters_(find_unused_parameters),
gradient_as_bucket_view_(gradient_as_bucket_view),
local_used_maps_reduced_(false),
backward_stats_base_(0),
has_rebuilt_bucket_(false),
bucket_bytes_cap_(bucket_bytes_cap),
divFactor_(kUnsetDivFactor),
comm_hook_(nullptr) {
C10_LOG_API_USAGE_ONCE("torch.distributed.ddp.reducer");
TORCH_CHECK(replicas_.size() >= 1, "Expected at least one model replica.");
TORCH_CHECK(replicas_[0].size() >= 1, "Expected at least one parameter.");
// If `expect_sparse_gradients` is not specified, initialize it such that
// we do not expect sparse gradients for any parameter.
if (expect_sparse_gradients_.empty()) {
expect_sparse_gradients_ = std::vector<std::vector<bool>>(
replicas_.size(), std::vector<bool>(replicas_[0].size(), false));
}
TORCH_INTERNAL_ASSERT(expect_sparse_gradients_.size() == replicas_.size());
// Corresponding params' layouts (strides) must match across
// replicas within this process and across processes.
// (see Note: "Gradient Layout Contract" in initialize_buckets).
verify_replicas_within_process();
verify_replica0_across_processes();
// Initialize variable bucketing.
// This can be reinitialized later after capturing runtime information.
{
std::lock_guard<std::mutex> lock(mutex_);
initialize_buckets(std::move(bucket_indices));
}
// All variables are expected to have their `grad_fn` set to the gradient
// accumulation function (since they are leafs in the autograd graph).
// We store pointers to these functions such that we can check if they are
// used in an autograd pass. If they are not, we know their grad tensors
// can be marked as ready for reduction.
{
const auto replica_count = replicas_.size();
grad_accumulators_.resize(replica_count);
for (size_t replica_index = 0; replica_index < replica_count;
replica_index++) {
const auto variable_count = replicas_[replica_index].size();
grad_accumulators_[replica_index].resize(variable_count);
for (size_t variable_index = 0; variable_index < variable_count;
variable_index++) {
auto& variable = replicas_[replica_index][variable_index];
const auto index = VariableIndex(replica_index, variable_index);
// The gradient accumulator function is lazily initialized once.
// Therefore we can use its presence in the autograd graph as
// evidence that the parameter has participated in an iteration.
auto grad_accumulator =
torch::autograd::impl::grad_accumulator(variable);
#ifndef _WIN32
using torch::distributed::autograd::ThreadLocalDistAutogradContext;
#endif
// Hook to execute after the gradient accumulator has executed.
hooks_.emplace_back(
grad_accumulator->add_post_hook(
torch::make_unique<torch::autograd::utils::LambdaPostHook>(
[=](const torch::autograd::variable_list& outputs,
const torch::autograd::variable_list& /* unused */) {
#ifndef _WIN32
this->rpc_context_.set(
ThreadLocalDistAutogradContext::getContextPtr());
#endif
this->autograd_hook(index);
return outputs;
})),
grad_accumulator);
// Map raw function pointer to replica index and parameter index.
// This is used later on when the autograd graph is traversed
// to check for parameters for which no gradient is computed.
func_[grad_accumulator.get()] = index;
// The gradient accumulator is stored as weak_ptr in the autograd
// metadata of the variable, so we have to keep it alive here for
// the raw pointer to be valid.
grad_accumulators_[replica_index][variable_index] =
std::move(grad_accumulator);
}
}
}
// Initialize backward stats vector.
{
const auto replica_count = replicas_.size();
backward_stats_.resize(replica_count);
const auto variable_count = replicas_[0].size();
std::for_each(
backward_stats_.begin(),
backward_stats_.end(),
[=](std::vector<int64_t>& v) { v.resize(variable_count); });
}
// See Note [Skip allreducing local_used_maps_dev]
if (find_unused_parameters_) {
// Initialize locally used parameter maps
{
const auto replica_count = replicas_.size();
const auto variable_count = replicas_[0].size();
local_used_maps_.resize(replica_count);
local_used_maps_dev_.resize(replica_count);
for (size_t i = 0; i < replica_count; i++) {
at::TensorOptions options;
options = options.dtype(at::kInt);
if (replicas_[i][0].is_cuda()) {
at::DeviceGuard g(replicas_[i][0].device());
local_used_maps_[i] = at::zeros(
{static_cast<long>(variable_count)}, options.pinned_memory(true));
} else {
local_used_maps_[i] =
at::zeros({static_cast<long>(variable_count)}, options);
}
// This tensor needs to be on the same device as replica because backend
// such as NCCL may not support CPU tensors, and hence it might not work
// if we always put it on CPU.
options = options.device(replicas_[i][0].device());
local_used_maps_dev_[i] =
at::empty({static_cast<long>(variable_count)}, options);
}
}
}
}
// Note [Skip allreducing local_used_maps_dev]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// If find_unused_parameters_ is set to false, there is no need to allreduce
// local_used_maps_dev_, because all parameters will be reduced anyway.
// Therefore, we can avoid allocating memory for local_used_maps and
// local_used_maps_dev_ if find_unused_parameters_ is false.
// Note [DDP Communication Hook]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// If DDP communication hook is not registered, the reducer reduces the buckets
// by just calling allreduce. If registered, it calls the hook and uses future
// work handle. If registered, reducer also skips dividing grads by world size.
// The reason for this is that the communication hook is expected to completely
// override how we perform communication and the user should have complete
// control over how the grads are handled.
//
// DDP communication hook is an enhancement that provides a hook which can be
// used to override how DDP communicates gradients across ranks, this can be
// used for algorithms like Gradient Compression/GossipGrad. This hook can be
// registered from Python API using `register_comm_hook`. `PythonCommHook`
// enables registering a Python hook and is a subclass of `CommHookInterface`.
// `CommHookInterface` can be used to implement CPP hooks in the future.
Reducer::~Reducer() noexcept(false) {
// Remove all hooks on variables registered by this Reducer. This is necessary
// to make DDP failure recoverable. Otherwise, multiple Reducer instances
// (from recoveries) will add their hooks to the original model, and those
// hooks will try to invoke methods on a deleted Reducer objects.
for (auto& hook : hooks_) {
auto& key = hook.first;
auto& grad_accumulator = hook.second;
TORCH_CHECK(
grad_accumulator->del_post_hook(key),
"Reducer attempts to delete a non-existing hook.");
}
}
// Verifies replicas in this process treat the same number of params,
// all params require grad, and corresponding params across replicas
// have the same dtype/size/layout.
void Reducer::verify_replicas_within_process() {
const auto replica_count = replicas_.size();
for (size_t replica_index = 0; replica_index < replica_count;
replica_index++) {
const auto variable_count = replicas_[replica_index].size();
TORCH_CHECK(
replicas_[replica_index].size() == replicas_[0].size(),
"Model replicas must have an equal number of parameters.");
TORCH_CHECK(
expect_sparse_gradients_[replica_index].size() ==
expect_sparse_gradients_[0].size(),
"Expected number of entries in expect_sparse_gradients ",
"to be equal across replicas.");
for (size_t variable_index = 0; variable_index < variable_count;
variable_index++) {
TORCH_CHECK(
replicas_[replica_index][variable_index].requires_grad(),
"Variables must require gradients (have `requires_grad` set).");
TORCH_CHECK(
replicas_[replica_index][variable_index].sizes() ==
replicas_[0][variable_index].sizes(),
"Variables across model replicas must have identical sizes.");
TORCH_CHECK(
replicas_[replica_index][variable_index].strides() ==
replicas_[0][variable_index].strides(),
"Variables across model replicas must have identical strides.");
TORCH_CHECK(
replicas_[replica_index][variable_index].dtype() ==
replicas_[0][variable_index].dtype(),
"Variables across model replicas must have identical dtype.");
TORCH_CHECK(
expect_sparse_gradients_[replica_index][variable_index] ==
expect_sparse_gradients_[0][variable_index],
"Expected the same variables across replicas to either both ",
"or neither expect a sparse gradient.");
}
}
}
// Verifies corresponding params in replica 0 have the same sizes/strides
// across processes.
void Reducer::verify_replica0_across_processes() {
size_t i = 0;
for (const auto& t : replicas_[0]) {
i += 2 * t.dim();
}
at::TensorOptions options;
options = options.dtype(at::kLong);
auto metadata = at::empty({static_cast<long>(i)}, options);
// Technically, process 0 is the broadcast source, so only process 0 needs
// to populate metadata. But no harm keeping work aligned across processes.
auto metadata_accessor = metadata.accessor<int64_t, 1>();
i = 0;
for (const auto& t : replicas_[0]) {
for (const auto& sz : t.sizes()) {
metadata_accessor[i++] = sz;
}
for (const auto& str : t.strides()) {
metadata_accessor[i++] = str;
}
}
auto metadata_dev = metadata.clone().to(replicas_[0][0].device());
std::vector<at::Tensor> vec{metadata_dev};
process_group_->broadcast(vec)->wait();
// Technically, process 0 doesn't need to double-check metadata, because it
// was the source. But no harm keeping work aligned.
auto control = at::empty({static_cast<long>(i)}, options);
control.copy_(metadata_dev, /*non_blocking=*/false);
auto control_accessor = control.accessor<int64_t, 1>();
i = 0;
for (size_t p = 0; p < replicas_[0].size(); p++) {
const auto& t = replicas_[0][p];
// I'd like to include which process we are in the message,
// but ProcessGroup::getRank is not public!
for (const auto& sz : t.sizes()) {
TORCH_CHECK(
sz == control_accessor[i++],
"replicas[0][",
p,
"] in this process"
" with sizes ",
t.sizes(),
" appears not to match sizes of the same param in process 0.");
}
for (const auto& str : t.strides()) {
TORCH_CHECK(
str == control_accessor[i++],
"replicas[0][",
p,
"] in this process"
" with strides ",
t.strides(),
" appears not to match strides of the same param in process 0.");
}
}
}
void Reducer::check_grad_layout(
const at::Tensor& grad,
const at::Tensor& bucket_view) {
// Ensure that the gradient type matches the bucket type.
TORCH_CHECK(
grad.options().type_equal(bucket_view.options()),
"Expected ",
bucket_view.toString(),
", got ",
grad.toString());
TORCH_INTERNAL_ASSERT(grad.device() == bucket_view.device());
TORCH_INTERNAL_ASSERT(grad.numel() == bucket_view.numel());
// AccumulateGrad doesn't HAVE to obey the grad layout contract.
// The penalty for disobedience is reduced performance, not numerical
// death. Warnings here help diagnose poor DDP performance.
if (grad.strides() != bucket_view.strides()) {
TORCH_WARN_ONCE(
"Grad strides do not match bucket view strides. "
"This may indicate grad was not created according to the "
"gradient layout contract, or that the param's strides "
"changed since DDP was constructed. This is not an error, "
"but may impair performance.\n"
"grad.sizes() = ",
grad.sizes(),
", strides() = ",
grad.strides(),
"\n",
"bucket_view.sizes() = ",
bucket_view.sizes(),
", strides() = ",
bucket_view.strides());
}
if (!gradient_as_bucket_view_) {
TORCH_INTERNAL_ASSERT(!grad.is_alias_of(bucket_view));
}
}
void Reducer::copy_grad_to_bucket(at::Tensor& grad, at::Tensor& bucket_view) {
// See Note [DDP Communication Hook]
if (comm_hook_ == nullptr) {
// imitates wrapped_scalar_tensor in ATen/native/BinaryOps.cpp
auto wrapped = c10::scalar_to_tensor(double(1.) / divFactor_);
wrapped.unsafeGetTensorImpl()->set_wrapped_number(true);
// Divides while copying into the bucket view.
at::native::mul_out(bucket_view, grad, wrapped);
} else {
bucket_view.copy_(grad);
}
}
void Reducer::mark_variable_ready_dense(VariableIndex index) {
const auto replica_index = index.replica_index;
const auto variable_index = index.variable_index;
const auto& bucket_index = variable_locators_[variable_index];
auto& bucket = buckets_[bucket_index.bucket_index];
auto& replica = bucket.replicas[replica_index];
auto& variable = replica.variables[bucket_index.intra_bucket_index];
const auto offset = replica.offsets[bucket_index.intra_bucket_index];
const auto length = replica.lengths[bucket_index.intra_bucket_index];
auto& bucket_view = replica.bucket_views_in[bucket_index.intra_bucket_index];
// Copy contents of gradient tensor to bucket tensor.
// If the gradient is not set, we assume it wasn't computed
// as part of the current backwards pass, and zero the part
// of the bucket it would otherwise hold.
runGradCallbackForVariable(variable, [&](auto& grad) {
if (grad.defined()) {
this->check_grad_layout(grad, bucket_view);
// When gradient_as_bucket_view_ is false, or even when
// gradient_as_bucket_view_ is true, in rare cases users may set grad to
// be None after every iteration. In these cases, grad and bucket_view are
// pointing to different storages and thus need to copy grads to
// bucket_view. If gradient_as_bucket_view_ is set as true, let grad point
// to bucket_view. If grad has already been set as views of buckets in
// previous iterations, no copy is needed.
if (!grad.is_alias_of(bucket_view)) {
this->copy_grad_to_bucket(grad, bucket_view);
if (gradient_as_bucket_view_) {
// Let grad point to bucket_view buffer.
grad = bucket_view;
// The grad is modified and need to be written back.
return true;
}
} else {
// If grad and bucket view point to the same storage, no need to copy
if (comm_hook_ == nullptr) {
bucket_view.div_(divFactor_);
}
}
} else {
bucket_view.zero_();
}
// The grad is not modified and doesn't need to be written back.
return false;
});
}
void Reducer::mark_variable_ready_sparse(VariableIndex index) {
const auto replica_index = index.replica_index;
const auto variable_index = index.variable_index;
const auto& bucket_index = variable_locators_[variable_index];
auto& bucket = buckets_[bucket_index.bucket_index];
auto& replica = bucket.replicas[replica_index];
auto& variable = replica.variables[bucket_index.intra_bucket_index];
runGradCallbackForVariable(variable, [&](auto& grad) {
TORCH_CHECK(grad.defined(), "Expected sparse gradient to be defined.");
TORCH_CHECK(
grad.options().layout() == c10::kSparse,
"Expected variable to have sparse gradient.");
// Sparse tensors cannot be grouped together with other sparse tensors
// in a single reduction operation like we can for dense tensors.
// Therefore, the `offsets` and `lengths` vectors in the bucket replica
// struct are empty, and there is no pre-existing accumulation tensor.
// Directly assign the sparse tensor to the `contents` field.
replica.contents = grad;
// See Note [DDP Communication Hook]
if (comm_hook_ == nullptr) {
replica.contents.div_(divFactor_);
}
// The grad is modified in place and needs to be written back.
return true;
});
}
std::vector<std::vector<at::Tensor>> Reducer::get_bucket_tensors() const {
std::lock_guard<std::mutex> lock(mutex_);
std::vector<std::vector<at::Tensor>> bucketTensors;
bucketTensors.reserve(buckets_.size());
for (const auto& bucket : buckets_) {
std::vector<at::Tensor> tensors;
tensors.reserve(bucket.replicas.size());
for (const auto& rep : bucket.replicas) {
tensors.push_back(rep.contents);
}
bucketTensors.push_back(std::move(tensors));
}
return bucketTensors;
}
void Reducer::set_forward_pass_work_handle(
std::shared_ptr<c10d::ProcessGroup::Work> forwardPassWorkHandle,
bool useStaticWorldSize) {
std::lock_guard<std::mutex> lock(mutex_);
forwardPassWorkHandle_.workHandle = std::move(forwardPassWorkHandle);
forwardPassWorkHandle_.useStaticWorldSize = useStaticWorldSize;
}
std::vector<at::Tensor> Reducer::get_local_used_maps_on_device() const {
std::lock_guard<std::mutex> lock(mutex_);
return local_used_maps_dev_;
}
void Reducer::push_rebuilt_params_for_all_indices() {
std::lock_guard<std::mutex> lock(mutex_);
if (!should_rebuild_buckets() || !rebuilt_param_indices_.empty()) {
return;
}
const auto replica_count = replicas_.size();
for (size_t replica_index = 0; replica_index < replica_count;
++replica_index) {
const auto variable_count = replicas_[replica_index].size();
for (size_t variable_index = 0; variable_index < variable_count;
++variable_index) {
const auto index = VariableIndex(replica_index, variable_index);
push_rebuilt_params(index);
}
}
}
void Reducer::push_rebuilt_params(const VariableIndex& index) {
if (should_rebuild_buckets() && index.replica_index == 0) {
rebuilt_params_.push_back(
replicas_[index.replica_index][index.variable_index]);
rebuilt_param_indices_.push_back(index.variable_index);
}
}
// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.
void Reducer::autograd_hook(VariableIndex index) {
std::lock_guard<std::mutex> lock(this->mutex_);
// See Note [Skip allreducing local_used_maps_dev]
if (find_unused_parameters_) {
// Since it gets here, this param has been used for this iteration. We want
// to mark it in local_used_maps_. During no_sync session, the same var can
// be set multiple times, which is OK as does not affect correctness. As
// long as it is used once during no_sync session, it is marked as used.
local_used_maps_[index.replica_index][index.variable_index] = 1;
}
// Ignore if we don't expect to be called.
// This may be the case if the user wants to accumulate gradients
// for number of iterations before reducing them.
if (!expect_autograd_hooks_) {
return;
}
// Rebuild bucket only if 1) it is the first time to rebuild bucket 2)
// find_unused_parameters_ is false, currently it does not support when there
// are unused parameters 3) this backward pass needs to run allreduce. Here,
// we just dump tensors and their parameter indices into rebuilt_params_ and
// rebuilt_param_indices_ based on gradient arriving order, and then at the
// end of finalize_backward(), buckets will be rebuilt based on
// rebuilt_params_ and rebuilt_param_indices_, and then will be broadcasted
// and initialized. Also we only need to dump tensors and parameter indices of
// one replica.
push_rebuilt_params(index);
// If `find_unused_parameters_` is true there may be model parameters that
// went unused when computing the model output, they won't be part of the
// autograd graph, and won't receive gradients. These parameters are
// discovered in the `prepare_for_backward` function and their indexes stored
// in the `unused_parameters_` vector.
if (!has_marked_unused_parameters_ && find_unused_parameters_) {
has_marked_unused_parameters_ = true;
for (const auto& unused_index : unused_parameters_) {
mark_variable_ready(unused_index);
}
}
// Finally mark variable for which this function was originally called.
mark_variable_ready(index);
}
void Reducer::mark_variable_ready(VariableIndex index) {
const auto replica_index = index.replica_index;
const auto variable_index = index.variable_index;
TORCH_CHECK(replica_index < replicas_.size(), "Out of range replica index.");
TORCH_CHECK(
variable_index < variable_locators_.size(),
"Out of range variable index.");
backward_stats_[replica_index][variable_index] =
current_time_in_nanos() - backward_stats_base_;
// Any time we mark a variable ready (be it in line due to unused parameters,
// or via an autograd hook), we require a call to the finalize function. If
// this doesn't happen before the next iteration (or call to
// `prepare_for_backwards`), we know something is wrong.
require_finalize_ = true;
const auto& bucket_index = variable_locators_[variable_index];
auto& bucket = buckets_[bucket_index.bucket_index];
auto& replica = bucket.replicas[replica_index];
// Something is wrong if all variables contained in this bucket replica have
// already been marked as ready.
if (replica.pending == 0) {
const auto common_error = c10::str(
"Expected to mark a variable ready only once. ",
"",
"This error is caused by one of the following reasons: ",
"1) Use of a module parameter outside the `forward` function. ",
"Please make sure model parameters are not shared across multiple ",
"concurrent forward-backward passes",
"2) Reused parameters in multiple reentrant backward passes. For ",
"example, if you use multiple `checkpoint` functions to wrap the ",
"same part of your model, it would result in the same set of ",
"parameters been used by different reentrant backward passes ",
"multiple times, and hence marking a variable ready multiple times. ",
"DDP does not support such use cases yet.");
TORCH_CHECK(
has_marked_unused_parameters_,
common_error,
"3) Incorrect unused parameter detection. The return value of the ",
"`forward` function is inspected by the distributed data parallel ",
"wrapper to figure out if any of the module's parameters went ",
"unused. For unused parameters, DDP would not expect gradients from ",
"then. However, if an unused parameter becomes part of the autograd ",
"graph at a later point in time (e.g., in a reentrant backward when ",
"using `checkpoint`), the gradient will show up unexpectedly. If all ",
"parameters in the model participate in the backward pass, you can ",
"disable unused parameter detection by passing the keyword argument ",
"`find_unused_parameters=False` to ",
"`torch.nn.parallel.DistributedDataParallel`.");
TORCH_CHECK(!has_marked_unused_parameters_, common_error);
}
// If it was scheduled, wait on allreduce in forward pass that tells us
// division factor based on no. of currently participating processes.
if (divFactor_ == kUnsetDivFactor) {
divFactor_ = process_group_->getSize();
auto& workHandle = forwardPassWorkHandle_.workHandle;
if (workHandle && !forwardPassWorkHandle_.useStaticWorldSize) {
workHandle->wait();
auto results = workHandle->result();
// Guard against the results being empty
TORCH_INTERNAL_ASSERT(results.size() > 0);
at::Tensor& res = results.front();
divFactor_ = res.item().to<int>();
}
}
if (bucket.expect_sparse_gradient) {
mark_variable_ready_sparse(index);
} else {
mark_variable_ready_dense(index);
}
// TODO(@pietern): Make this work for both CPU/CUDA tensors.
// When using CPU tensors we don't need to do this.
// // Record event so that we can wait for all of them.
// auto& event = replica.events[bucket_index.intra_bucket_index];
// event.record();
// Check if this was the final gradient for this bucket.
if (--replica.pending == 0) {
// Kick off reduction if all replicas for this bucket are ready.
if (--bucket.pending == 0) {
mark_bucket_ready(bucket_index.bucket_index);
}
}
// Run finalizer function and kick off reduction for local_used_maps once the
// final bucket was marked ready.
if (next_bucket_ == buckets_.size()) {
// See Note [Skip allreducing local_used_maps_dev]
if (find_unused_parameters_) {
// H2D from local_used_maps_ to local_used_maps_dev_
for (size_t i = 0; i < local_used_maps_.size(); i++) {
// We do async H2D to avoid the blocking overhead. The async copy and
// allreduce respect the current stream, so will be sequenced correctly.
local_used_maps_dev_[i].copy_(local_used_maps_[i], true);
}
local_used_work_ = process_group_->allreduce(local_used_maps_dev_);
}
// The autograd engine uses the default stream when running callbacks, so we
// pass in the current CUDA stream in case it is not the default.
c10::DeviceType deviceType = replica.contents.device().type();
const c10::impl::VirtualGuardImpl guard =
c10::impl::VirtualGuardImpl{deviceType};
const c10::Stream currentStream =
guard.getStream(replica.contents.device());
torch::autograd::Engine::get_default_engine().queue_callback([=] {
std::lock_guard<std::mutex> lock(this->mutex_);
// Run callback with the current stream
c10::OptionalStreamGuard currentStreamGuard{currentStream};
this->finalize_backward();
});
}
}
// Called when the bucket at the specified index is ready to be reduced.
void Reducer::mark_bucket_ready(size_t bucket_index) {
TORCH_INTERNAL_ASSERT(bucket_index >= next_bucket_);
// Buckets are reduced in sequence. Ignore this bucket if
// it's not its turn to be reduced.
if (bucket_index > next_bucket_) {
return;
}
// Keep going, until we either:
// - have kicked off reduction for all buckets, or
// - found a bucket that's not yet ready for reduction.
for (; next_bucket_ < buckets_.size() && buckets_[next_bucket_].pending == 0;
next_bucket_++) {
auto& bucket = buckets_[next_bucket_];
std::vector<at::Tensor> tensors;
tensors.reserve(bucket.replicas.size());
for (const auto& replica : bucket.replicas) {
// TODO(@pietern): Ensure proper synchronization with the CUDA events
// that recorded copies into this contents tensor. If these copies are
// executed on non-default streams, the current stream for the device
// that holds the contents tensor must wait on these events.
//
// As long as autograd uses the default stream for every device,
// these operations are implicitly sequenced, and we don't need to
// do any extra synchronization here.
//
tensors.push_back(replica.contents);
}
// See Note [DDP Communication Hook]
// TODO(@sinannasir): merge `work` and `future_work`. Related to GH Issue
// #41266.
if (comm_hook_ == nullptr) {
bucket.work = process_group_->allreduce(tensors);
} else {
bucket.future_work = comm_hook_->runHook(GradBucket(tensors));
}
}
}
void Reducer::initialize_buckets(
std::vector<std::vector<size_t>> bucket_indices) {
// If initialize_buckets is called inside DDP constructor, then
// it does not matter rpc context ptr is nullptr or not, as grad
// will not be mutated.
// If initialize_buckets is called during training loop, e.g, inside
// rebuild_buckets(), since grad could be mutated and be pointed to
// bucket_view, then it needs to check rpc context ptr is nullptr or not,
// If rpc context ptr is nullptr, mutate variable.grad(); otherwise,
// mutate grad in rpc context.
#ifndef _WIN32
using torch::distributed::autograd::ThreadLocalDistAutogradContext;
this->rpc_context_.set(ThreadLocalDistAutogradContext::getContextPtr());
#endif
// This shouldn't be called if we're expecting autograd hooks to fire.
TORCH_CHECK(
!expect_autograd_hooks_,
"`initialize_buckets` must NOT be called during autograd execution.");
// Clear current bucket assignment.
buckets_.clear();
variable_locators_.clear();
// Ensure we have a bucket index for every variable.
variable_locators_.resize(replicas_[0].size());
// Iterate over buckets.
const auto bucket_count = bucket_indices.size();
const auto replica_count = replicas_.size();
buckets_.reserve(bucket_count);
for (size_t bucket_index = 0; bucket_index < bucket_count; bucket_index++) {
Bucket bucket;
// TODO(@pietern): Validate indices.
// Must be non-empty, unique, and unique across buckets.
TORCH_CHECK(
bucket_indices[bucket_index].size() > 0, "Empty bucket specified.");
// Variables that expect sparse gradients must have their own bucket.
if (bucket_indices[bucket_index].size() == 1) {
const auto variable_index = bucket_indices[bucket_index].front();
bucket.expect_sparse_gradient =
expect_sparse_gradients_[0][variable_index];
} else {
for (const auto variable_index : bucket_indices[bucket_index]) {
TORCH_CHECK(
!expect_sparse_gradients_[0][variable_index],
"Buckets with more than one variable cannot include variables ",
"that expect a sparse gradient.");
}
}
// Iterate over model replicas.
for (size_t replica_index = 0; replica_index < replica_count;
replica_index++) {
BucketReplica replica;
if (bucket.expect_sparse_gradient) {
const auto variable_index = bucket_indices[bucket_index].front();
const auto& variable = replicas_[replica_index][variable_index];
TORCH_INTERNAL_ASSERT(bucket_indices[bucket_index].size() == 1);
replica.variables = {variable};
} else {
at::TensorOptions options;
size_t offset = 0;
// Iterate over bucket variables.
for (const auto variable_index : bucket_indices[bucket_index]) {
TORCH_CHECK(
variable_index < replicas_[replica_index].size(),
"Out of range variable index specified.");
const auto& variable = replicas_[replica_index][variable_index];
if (!options.has_device()) {
options = options.device(variable.device());
} else {
TORCH_CHECK(
variable.device() == options.device(),
"All parameters in a bucket must be ",
"placed on the same device.");
}
if (!options.has_dtype()) {
options = options.dtype(variable.dtype());
} else {
TORCH_CHECK(
variable.dtype() == options.dtype(),
"All parameters in a bucket must have the same dtype.");
}
const auto length = variable.numel();
replica.variables.push_back(variable);
replica.offsets.push_back(offset);
replica.lengths.push_back(length);
offset += length;
}
// Allocate bucket contents tensor.
replica.contents = at::empty({static_cast<long>(offset)}, options);
// Note: "Gradient Layout Contract"
//
// Here, create views into the contents tensor for each variable's grad.
// Views serve as entry points to copy_ each grad's data in/out of the
// flat contents tensor.
//
// Gradients may have dense memory but non-row-major-contiguous strides
// (e.g. channels_last or channels_last_3d). For coalesced accesses
// during copy_s, it's beneficial for each view's layout to match its
// grad's layout.
//
// Specifically, we expect torch/csrc/autograd/AccumulateGrad.h produces
// grads that obey there "Gradient Layout Contract":
// (1) if variable.is_non_overlapping_and_dense(), the stashed grad's
// strides match variable.
// (2) else, stashed grad is rowmajor contiguous.
// and create views to match.
//
// If AccumulateGrad breaks the contract, and produces a grad with an
// unexpected layout, performance will degrade due to poor memory access
// patterns when copy_ing grad data in and out of its bucket view.
// However, numerics remain correct, because the bucket view is the same
// on either end of the raw allreduce. bucket_view_in.copy(grad)
// tranposes
// (+ densifies) to the bucket view's layout, the data is allreduced,
// then grad.copy_(bucket_view_out) transposes it back to grad's layout.
//
// The only way the numerics can go haywire is if the bucket views
// themselves have different layouts across processes (or replicas).
// Bucket views' sizes and strides are set based on param layouts, using
// the same logic that (we expect) AccumulateGrad uses for their grads.
// Therefore, the only way a bucket view could have different layouts in
// different processes is if its param has a different layout in
// different processes. We can check that param layouts match across
// processes and replicas in Reducer's constructor by allreducing some
// metadata. Checking just once won't catch if someone messes with
// param layouts over time, but not messing with params after DDP
// construction is already a documented constraint.
initialize_bucket_views(replica, replica.contents);
}
// Add bucket replica to enclosing bucket.
bucket.replicas.push_back(std::move(replica));
}
// Map participating variables to this bucket.
// This is identical across replicas so we only need to do this once.
size_t intra_bucket_index = 0;
for (const auto variable_index : bucket_indices[bucket_index]) {
TORCH_CHECK(
variable_index < variable_locators_.size(),
"Out of range variable index specified.");
variable_locators_[variable_index] = VariableLocator(
bucket_index, intra_bucket_index++);
}
bucket.variable_indices = std::move(bucket_indices[bucket_index]);
buckets_.push_back(std::move(bucket));
}
}
// (see Note: "Gradient Layout Contract" in initialize_buckets).
void Reducer::initialize_bucket_views(
Reducer::BucketReplica& replica,
at::Tensor& contents) {
for (size_t i = 0; i < replica.variables.size(); i++) {
auto& v = replica.variables[i];
const auto offset = replica.offsets[i];
const auto length = replica.lengths[i];
if (v.is_non_overlapping_and_dense()) {
// If the param's memory is dense, match its layout, anticipating
// the autograd engine (AccumulateGrad) will also create gradients
// matching its layout.
replica.bucket_views_in.push_back(
contents.as_strided(v.sizes(), v.strides(), offset));
} else {
// Fall back to a C-style contiguous view, again anticipating
// AccumulateGrad will do the same when stashing grads for non-dense
// params.
replica.bucket_views_in.push_back(
contents.narrow(0, offset, length).view(v.sizes()));
}
// By default `bucket_views_out` and `bucket_views_in` are
// essentially the same thing.
replica.bucket_views_out = replica.bucket_views_in;
// If gradient_as_bucket_view_ is set as true, then there are two cases to
// handle: initialize_bucket_views could be called inside initialize_buckets
// when rebuild_buckets, if grad has already been defined/calculated in
// previous iteration, old grad needs to be copied into new bucket_view and
// let grad point to the new bucket_view, initialize_bucket_views could also
// be called inside initialize_buckets during construction. Grads are not
// defined during construction time, in this case, do not let grad point to
// bucket_view, because grads should be kept as being undefined for globally
// unused parameters.
if (gradient_as_bucket_view_) {
auto& bucket_view = replica.bucket_views_in.back();
runGradCallbackForVariable(v, [&](auto& grad) {
if (grad.defined() && !grad.is_alias_of(bucket_view)) {
bucket_view.copy_(grad);
grad = bucket_view;
// The grad is modefied and needs to be written back.
return true;
}
// The grad is not modified and does not need to be written back.
return false;
});
}
}
}
// (see Note: "Gradient Layout Contract" in initialize_buckets).
void Reducer::populate_bucket_views_out(
Reducer::BucketReplica& replica,
at::Tensor& tensor) {
replica.bucket_views_out.clear();
for (size_t i = 0; i < replica.variables.size(); i++) {
const auto& v = replica.variables[i];
const auto offset = replica.offsets[i];
const auto length = replica.lengths[i];
if (v.is_non_overlapping_and_dense()) {
// If the param's memory is dense, match its layout, anticipating
// the autograd engine (AccumulateGrad) will also create gradients
// matching its layout.
replica.bucket_views_out.push_back(
tensor.as_strided(v.sizes(), v.strides(), offset));
} else {
// Fall back to a C-style contiguous view, again anticipating
// AccumulateGrad will do the same when stashing grads for non-dense
// params.
replica.bucket_views_out.push_back(
tensor.narrow(0, offset, length).view(v.sizes()));
}
}
}
// Traverse the autograd graph starting at the specified output.
// All parameters for which we have a pointer to their gradient accumulation
// functions, but don't show up in the autograd graph will be marked ready for
// for reduction as soon as the first autograd hook is called. This is not
// done immediately because the model output may be ignored, and we only
// want to start performing reductions on `torch.autograd.backward()`.
void Reducer::prepare_for_backward(
const std::vector<torch::autograd::Variable>& outputs) {
std::lock_guard<std::mutex> lock(mutex_);
std::unordered_set<torch::autograd::Node*> seen;
std::vector<torch::autograd::Node*> queue;
// Reset accounting.
expect_autograd_hooks_ = true;
next_bucket_ = 0;
backward_stats_base_ = current_time_in_nanos();
for (auto& bucket : buckets_) {
for (auto& replica : bucket.replicas) {
replica.pending = replica.variables.size();
}
bucket.pending = bucket.replicas.size();
}
// Reset unused parameter accounting.
has_marked_unused_parameters_ = false;
unused_parameters_.clear();
// If find_unused_parameters_ is false, we assume that autograd hooks for ALL
// variables will be called, and we don't have to search the autograd graph
// for presence of these hooks.
if (!find_unused_parameters_) {
return;
}
// Seed queue with the grad functions of all outputs.
for (const auto& output : outputs) {
const auto& grad_fn = output.grad_fn();
if (grad_fn) {
queue.push_back(grad_fn.get());
}
}
// Traverse the autograd graph starting at the specified output.
while (!queue.empty()) {
auto fn = queue.back();
queue.pop_back();
for (const auto& edge : fn->next_edges()) {
if (auto next_ptr = edge.function.get()) {
const bool was_inserted = seen.insert(next_ptr).second;
if (was_inserted) {
queue.push_back(next_ptr);
}
}
}
}
// Find accumulator functions that don't show up in this graph.
for (const auto& it : func_) {
// If the accumulator function is present in the graph, we know
// a gradient will be computed for the corresponding parameter.
if (seen.count(it.first) > 0) {
continue;
}
unused_parameters_.push_back(it.second);
}
}
void Reducer::copy_bucket_to_grad(
torch::autograd::Variable& variable,
Reducer::BucketReplica& replica,
size_t intra_bucket_index,
bool global_unused) {
const auto& bucket_view = replica.bucket_views_out[intra_bucket_index];
runGradCallbackForVariable(variable, [&](auto& grad) {
// If a parameter is globally unused, we keep its grad untouched.
if (!global_unused) {
if (!grad.defined()) {
// Creates grad according to the "Gradient Layout Contract"
// (see torch/csrc/grad/AccumulateGrad.h)
grad =
torch::autograd::utils::clone_obey_contract(bucket_view, variable);
} else {
grad.copy_(bucket_view);
}
// The grad is modified and needs to be written back.
return true;
}
// The grad is not modified.
return false;
});
}
// A bucket with one or more dense tensors needs to be unflattened.
void Reducer::finalize_bucket_dense(Bucket& bucket) {
for (size_t replica_index = 0; replica_index < bucket.replicas.size();
replica_index++) {
auto& replica = bucket.replicas[replica_index];
for (size_t intra_bucket_index = 0;
intra_bucket_index < replica.variables.size();
intra_bucket_index++) {
auto& variable = replica.variables[intra_bucket_index];
const auto offset = replica.offsets[intra_bucket_index];
const auto length = replica.lengths[intra_bucket_index];
bool global_unused = false;
// See Note [Skip allreducing local_used_maps_dev]
if (find_unused_parameters_) {
// Determine if this param has been used globally or not.
//
// If the variable was used locally, it is also used globally and then
// we don't need to wait for the reduction. Otherwise we lazily wait for
// the reduction to complete, only when we see a variable that was
// unused locally. Then we end up delaying the synchronization point
// that local_used_work_->wait() implies. If we don't have any unused
// parameters at all, we can skip waiting for the work to complete
// altogether, and cause negligible performance overhead for models
// where all parameters are used. Such lazily waiting means minimizing
// performance impact for the big majority of models where all
// parameters are always used. Then we only pay the overhead cost if
// there is indeed a parameter that is locally unused, because we need
// to check if it's also globally unused.
size_t variable_index = bucket.variable_indices[intra_bucket_index];
// Note: global_unused might not be global yet. As we lazily wait for
// the reduction to complete, it becomes really global only if we get to
// the point as below where we wait for the reduction work, make D2H
// copy, and update global_unused with the real global consensus, i.e.
// local_used_maps_reduced_ is true.
global_unused =
local_used_maps_[replica_index][variable_index].item<int>() == 0;
if (global_unused && !local_used_maps_reduced_) {
// Wait for local_used_maps reduction to complete.
local_used_work_->wait();
// D2H from local_used_maps_dev_ to local_used_maps_
for (size_t i = 0; i < local_used_maps_.size(); i++) {
local_used_maps_[i].copy_(local_used_maps_dev_[i]);
}
global_unused =
local_used_maps_[replica_index][variable_index].item<int>() == 0;
local_used_maps_reduced_ = true;
}
}
if (!gradient_as_bucket_view_) {
copy_bucket_to_grad(
variable, replica, intra_bucket_index, global_unused);
} else {
const auto& bucket_view_out =
replica.bucket_views_out[intra_bucket_index];
auto& bucket_view_in = replica.bucket_views_in[intra_bucket_index];
// If communication_hook is registered, bucket_view_out stores
// allreduced results in a newly allocated tensor, copy bucket_view_out
// back to bucket_view_in that referring to replica.content tensor and
// grad.
if (!bucket_view_in.is_alias_of(bucket_view_out)) {
bucket_view_in.copy_(bucket_view_out);
}
runGradCallbackForVariable(variable, [&](auto& grad) {
// If a parameter is globally unused, we keep its grad untouched.
if (!global_unused) {
// If grad is globally used but locally unused, let grad point to
// bucket_view_in
if (!grad.defined()) {
grad = bucket_view_in;
} else {
if (!grad.is_alias_of(bucket_view_in)) {
grad.copy_(bucket_view_in);
TORCH_WARN_ONCE(
"Detected at least one parameter gradient is not the "
"expected DDP bucket view when setting "
"gradient_as_bucket_view=True. This can happen when "
"multiple parameters sharing the same gradient. For "
"example, param0 and param1 share the same gradient "
"grad0. In this case, grad0 would first point to "
"bucket_view_in0 when param0 is ready. Later, when "
"param1 is ready, it will override grad0 to point to "
"bucket_view_in1. However, param0 still expects grad0 "
"to point to bucket_view_in0, and hence hit this "
"warning. If you saw this message, please double-check if "
"the above situation is expected for your application.");
}
}
// The grad is modified and needs to be written back.
return true;
}
// The grad is not modified.
return false;
});
}
}
}
}
void Reducer::finalize_backward() {
// No longer expect autograd hooks to fire after this function returns.
TORCH_INTERNAL_ASSERT(expect_autograd_hooks_);
expect_autograd_hooks_ = false;
// No longer require call to finalize after this function returns.
TORCH_INTERNAL_ASSERT(require_finalize_);
require_finalize_ = false;
// Unset allreduce division factor, as it may change in next backwards pass
// when running with DDP join mode.
divFactor_ = kUnsetDivFactor;
// Check that all buckets were completed and had their work kicked off.
TORCH_INTERNAL_ASSERT(next_bucket_ == buckets_.size());
// Wait for asynchronous reduction to complete and unflatten contents.
for (auto& bucket : buckets_) {
// See Note [DDP Communication Hook]
if (comm_hook_ == nullptr) {
TORCH_INTERNAL_ASSERT(
bucket.work,
"Expected bucket.work not to be null. "
"This may indicate that allreduce hooks were not properly installed.");
bucket.work->wait();
} else {
TORCH_INTERNAL_ASSERT(
bucket.future_work,
"Expected bucket.future_work not to be null. "
"This may indicate that communication hook was not properly installed.");
bucket.future_work->wait();
auto future_result =
comm_hook_->processFuture(bucket.future_work->value());
for (size_t i = 0; i < future_result.size(); i++) {
auto& replica = bucket.replicas[i];
if (bucket.expect_sparse_gradient) {
replica.contents.copy_(future_result[i]);
} else {
// Reinitialize only `bucket_views_out` with the future_result by
// following the same logic in `initialize_buckets`.
populate_bucket_views_out(replica, future_result[i]);
}
}
}
if (!bucket.expect_sparse_gradient) {
// We don't need to finalize the sparse bucket since the sparse grad and
// the bucket essentially point to the same storage. As a result, once
// the allreduce is done, the sparse grads are automatically updated.
finalize_bucket_dense(bucket);
}
}
// See Note [Skip allreducing local_used_maps_dev]
if (find_unused_parameters_) {
// Reset unused parameter accounting.
for (auto& local_used : local_used_maps_) {
local_used.fill_(0);
}
// Due to the lazy wait, it is possible that reduction of the current
// iteration is still going when the one for next iteration gets kicked off.
// For such case, we want to wait explicitly to make sure the reduction does
// complete before kicking off next one. Otherwise the previous one may
// interfere, write to the device-side memory and clobber the content of
// local_unused_maps_dev_.
if (!local_used_maps_reduced_) {
local_used_work_->wait();
}
local_used_maps_reduced_ = false;
}
}
void Reducer::runGradCallbackForVariable(
torch::autograd::Variable& variable,
GradCallback&& cb) {
auto context_ptr = rpc_context_.context_ptr.load();
if (context_ptr == nullptr) {
cb(variable.mutable_grad());
} else {
// Under distributed autograd
#ifndef _WIN32
context_ptr->runGradCallbackForVariable(variable, std::move(cb));
#endif
}
}
void Reducer::RpcContext::set(ContextPtr&& new_context_ptr) {
// We should set 'new_context_ptr' even if it's nullptr. That means the
// reducer is under a local backward run.
const auto new_context_raw_ptr = new_context_ptr.get();
if (context_ptr.exchange(new_context_raw_ptr) != new_context_raw_ptr) {
// Set the shared ptr to the context only if it's set first time.
// All call sites should use the same context ptr.
// Use an atomic to avoid data race from multiple threads.
context_ptr_holder = std::move(new_context_ptr);
}
}
void Reducer::sync_bucket_indices(
std::vector<std::vector<size_t>>& bucket_indices) {
auto num_buckets = bucket_indices.size();
std::vector<size_t> bucket_sizes;
bucket_sizes.reserve(num_buckets);
int64_t total_size = 0;
for (size_t i = 0; i < num_buckets; i++) {
auto bucket_size = bucket_indices.at(i).size();
bucket_sizes.push_back(bucket_size);
total_size += bucket_size;
}
at::TensorOptions options;
options = options.dtype(at::kInt);
options = options.device(replicas_[0][0].device());
// Group indices and num_bucket together into indices_tensor
// Broadcast this tensor first, as its size is equal among all processes
auto indices_tensor = at::empty({total_size + 1}, at::kInt);
auto indices_accessor = indices_tensor.accessor<int, 1>();
auto indices_accessor_Index = 0;
for (size_t i = 0; i < num_buckets; i++) {
const auto& bucket_size = bucket_indices.at(i).size();
for (size_t j = 0; j < bucket_size; j++) {
indices_accessor[indices_accessor_Index++] = bucket_indices[i][j];
}
}
indices_accessor[indices_accessor_Index] = num_buckets;
// Copy CPU tensor to device tensor, as the process_group_ could be NCCL and
// it can only broadcast device tensors.
auto indices_tensor_device = at::empty({total_size + 1}, options);
indices_tensor_device.copy_(indices_tensor, /*non_blocking=*/true);
std::vector<at::Tensor> indices_tensor_list = {indices_tensor_device};
process_group_->broadcast(indices_tensor_list)->wait();
indices_tensor.copy_(indices_tensor_list.front(), /*non_blocking=*/false);
// Update num_buckets after receiving it from rank 0
num_buckets = indices_accessor[indices_accessor_Index];
// Broadcast bucket_sizes
auto bucket_sizes_tensor = at::empty({(int64_t)num_buckets}, at::kInt);
auto bucket_sizes_accessor = bucket_sizes_tensor.accessor<int, 1>();
for (size_t i = 0; i < num_buckets; i++) {
// For rank != 0, it is possible that local num buckets bucket_sizes.size()
// is smaller than broadcasted num_buckets
bucket_sizes_accessor[i] =
bucket_sizes.at(std::min(i, (bucket_sizes.size() - 1)));
}
auto bucket_sizes_tensor_device = at::empty({(int64_t)num_buckets}, options);
bucket_sizes_tensor_device.copy_(bucket_sizes_tensor, /*non_blocking=*/true);
std::vector<at::Tensor> bucket_sizes_tensor_list = {
bucket_sizes_tensor_device};
process_group_->broadcast(bucket_sizes_tensor_list)->wait();
bucket_sizes_tensor.copy_(
bucket_sizes_tensor_list.front(), /*non_blocking=*/false);
// Clear bucket_indices first, and then update bucket_indices using received
// num_buckets, bucket_sizes_tensor and indices_tensor from rank 0
bucket_indices.clear();
bucket_indices.reserve(num_buckets);
indices_accessor_Index = 0;
for (size_t i = 0; i < num_buckets; i++) {
const auto& bucket_size = bucket_sizes_accessor[i];
std::vector<size_t> bucket;
bucket.reserve(bucket_size);
for (size_t j = 0; j < bucket_size; j++) {
bucket.push_back(indices_accessor[indices_accessor_Index++]);
}
bucket_indices.emplace_back(std::move(bucket));
}
}
bool Reducer::rebuild_buckets() {
// Ensure reduction for previous backwards pass is finished. If user's model
// has unused parameters for example, this will raise an error recommending to
// run with find_unused_parameters=True, instead of the size mismatch
// exception below.
ensure_prior_reduction_finished();
std::lock_guard<std::mutex> lock(mutex_);
if (!should_rebuild_buckets() || rebuilt_params_.empty()) {
return false;
}
TORCH_INTERNAL_ASSERT(
rebuilt_params_.size() == rebuilt_param_indices_.size(),
c10::str(
"rebuilt parameter tensors size is not same as rebuilt parameter indices size: ",
rebuilt_params_.size(),
" versus ",
rebuilt_param_indices_.size()));
TORCH_INTERNAL_ASSERT(
replicas_[0].size() == rebuilt_param_indices_.size(),
c10::str(
"rebuilt parameter indices size is not same as original model parameters size.",
replicas_[0].size(),
" versus ",
rebuilt_param_indices_.size()));
std::vector<std::vector<size_t>> rebuilt_bucket_indices;
std::vector<size_t> bucket_size_limits;
bucket_size_limits.push_back(kDefaultFirstBucketBytes);
bucket_size_limits.push_back(bucket_bytes_cap_);
rebuilt_bucket_indices = compute_bucket_assignment_by_size(
rebuilt_params_,
bucket_size_limits,
expect_sparse_gradients_[0],
rebuilt_param_indices_);
// For rebuilt bucket indices, it needs to be synced across all ranks.
// Broadcast the newly rebuilt bucket indices from rank 0 in default.
// After syncing up rebuilt bucket indices, initialize buckets for reducer.
sync_bucket_indices(rebuilt_bucket_indices);
has_rebuilt_bucket_ = true;
rebuilt_params_.clear();
rebuilt_param_indices_.clear();
initialize_buckets(std::move(rebuilt_bucket_indices));
return true;
}
// See Note [DDP Communication Hook]
void Reducer::register_comm_hook(std::unique_ptr<CommHookInterface> iface) {
TORCH_CHECK(
comm_hook_ == nullptr, "register_comm_hook can only be called once.");
// TODO(@sinannasir): Single-process multiple-device mode support for DDP
// communication hook. Related to GH Issue #42542.
TORCH_CHECK(
replicas_.size() == 1,
"Communication hook does not support single-process multiple-device mode.");
comm_hook_ = std::move(iface);
}
void Reducer::ensure_prior_reduction_finished() {
// Check that any prior reduction has finished.
// The variable `require_finalize_` is true until all gradients
// have been computed and reduction of all buckets has been kicked off.
if (require_finalize_) {
TORCH_CHECK(
false,
"Expected to have finished reduction in the prior iteration before ",
"starting a new one. ",
"",
"This error indicates that your module has parameters that were ",
"not used in producing loss. ",
"",
"You can enable unused parameter detection by (1) passing the keyword "
"argument `find_unused_parameters=True` to ",
"`torch.nn.parallel.DistributedDataParallel`; (2) making sure all ",
"`forward` function outputs participate in calculating loss. "
"",
"If you already have done the above two steps, then the distributed ",
"data parallel module wasn't able to locate the output tensors in the ",
"return value of your module's `forward` function. ",
"Please include the loss function and the structure of the return ",
"value of `forward` of your module when reporting this issue (e.g. ",
"list, dict, iterable).");
}
}
namespace {
// Tensors may be coalesced into buckets. Buckets must contain tensors of
// the same type, on the same device, so a bucket can identified by a
// composite key of a tensor's type identifier and its device.
struct BucketKey {
BucketKey(c10::ScalarType type, c10::Device device)
: type(std::move(type)), device(std::move(device)) {}
const c10::ScalarType type;
const c10::Device device;
// See torch/csrc/utils/hash.h for dispatch code.
static size_t hash(const BucketKey& key) {
return c10::get_hash(key.type, key.device);
}
};
inline bool operator==(const BucketKey& lhs, const BucketKey& rhs) {
return lhs.type == rhs.type && lhs.device == rhs.device;
}
} // namespace
std::vector<std::vector<size_t>> compute_bucket_assignment_by_size(
const std::vector<at::Tensor>& tensors,
const std::vector<size_t>& bucket_size_limits,
const std::vector<bool>& expect_sparse_gradient,
const std::vector<int64_t>& tensor_indices) {
// Either expect_sparse_gradient is not specified or it has as many elements
// as the vector with tensors.
TORCH_INTERNAL_ASSERT(
expect_sparse_gradient.empty() ||
(tensors.size() == expect_sparse_gradient.size()));
TORCH_INTERNAL_ASSERT(tensors.size() > 0);
std::vector<std::vector<size_t>> result;
result.reserve(tensors.size());
// Keep iterator into the size_limit vector by tensor type and device.
// This is done so that we can use the consecutive bucket limits per type.
std::unordered_map<
BucketKey,
std::vector<size_t>::const_iterator,
c10::hash<BucketKey>>
bucket_size_limit_iterators;
// Local accumulator type for a single bucket.
struct BucketAccumulator {
std::vector<size_t> indices;
size_t size = 0;
};
// Keep vector of indices and size accumulator by tensor type and device.
std::unordered_map<BucketKey, BucketAccumulator, c10::hash<BucketKey>>
buckets;
for (size_t i = 0; i < tensors.size(); i++) {
const auto& tensor = tensors[i];
TORCH_CHECK(!tensor.is_sparse(), "No support for sparse tensors.");
// when tensor_indices is empty, the index of tensors[i] assigned to
// bucket is i, otherwise the tensor index is tensor_indices[i].
auto tensor_index = i;
if (!tensor_indices.empty()) {
tensor_index = tensor_indices[i];
}
// If we expect a sparse gradient to be produced for this tensor, it cannot
// be grouped together with other gradients and gets its own bucket.
if (!expect_sparse_gradient.empty() &&
expect_sparse_gradient[tensor_index]) {
result.push_back({tensor_index});
continue;
}
auto key = BucketKey(tensor.scalar_type(), tensor.device());
auto& bucket = buckets[key];
bucket.indices.push_back(tensor_index);
bucket.size += tensor.numel() * tensor.element_size();
// Initialize bucket size limit iterator if necessary.
if (bucket_size_limit_iterators.count(key) == 0) {
bucket_size_limit_iterators[key] = bucket_size_limits.begin();
}
auto& bucket_size_limit_iterator = bucket_size_limit_iterators[key];
const auto bucket_size_limit = *bucket_size_limit_iterator;
if (bucket.size >= bucket_size_limit) {
result.emplace_back(std::move(bucket.indices));
bucket = BucketAccumulator();
// Advance to the next bucket size limit for this type/device.
auto next = bucket_size_limit_iterator + 1;
if (next != bucket_size_limits.end()) {
bucket_size_limit_iterator = next;
}
}
}
// Add remaining buckets.
for (auto& it : buckets) {
auto& bucket = it.second;
if (!bucket.indices.empty()) {
result.emplace_back(std::move(bucket.indices));
}
}
// If tensor_indices is not empty, the order of the tensors is in the gradient
// ready order, so no need to sort.
// If tensor_indices is empty, sort resulting buckets by the minimum tensor
// index they include. We assume that the order of the tensors is the order in
// which they are used (or the reverse order in which their gradients are
// produced). This sorting step ensures that the buckets are ready in
// consecutive order.
if (tensor_indices.empty()) {
std::sort(
result.begin(),
result.end(),
[](const std::vector<size_t>& a, const std::vector<size_t>& b) {
const auto amin = std::min_element(a.begin(), a.end());
const auto bmin = std::min_element(b.begin(), b.end());
return *amin < *bmin;
});
}
return result;
}
} // namespace c10d
|