File: reducer.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (1519 lines) | stat: -rw-r--r-- 63,051 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
#include <torch/csrc/distributed/c10d/reducer.h>

#include <functional>

#include <c10/core/DeviceGuard.h>
#include <c10/core/StreamGuard.h>
#include <c10/util/Exception.h>
#include <c10/util/hash.h>
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/function_hook.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/autograd/utils/grad_layout_contract.h>
#include <torch/csrc/autograd/utils/lambda_post_hook.h>
#include <torch/csrc/distributed/c10d/comm.h>
#include <torch/csrc/utils/memory.h>

namespace c10d {
namespace {

inline int64_t current_time_in_nanos() {
  return torch::autograd::profiler::getTime();
}

constexpr int kUnsetDivFactor = -1;

} // namespace

Reducer::Reducer(
    std::vector<std::vector<torch::autograd::Variable>> replicas,
    std::vector<std::vector<size_t>> bucket_indices,
    std::shared_ptr<c10d::ProcessGroup> process_group,
    std::vector<std::vector<bool>> expect_sparse_gradients,
    int64_t bucket_bytes_cap,
    bool find_unused_parameters,
    bool gradient_as_bucket_view)
    : replicas_(std::move(replicas)),
      process_group_(std::move(process_group)),
      expect_sparse_gradients_(std::move(expect_sparse_gradients)),
      expect_autograd_hooks_(false),
      require_finalize_(false),
      next_bucket_(0),
      has_marked_unused_parameters_(false),
      find_unused_parameters_(find_unused_parameters),
      gradient_as_bucket_view_(gradient_as_bucket_view),
      local_used_maps_reduced_(false),
      backward_stats_base_(0),
      has_rebuilt_bucket_(false),
      bucket_bytes_cap_(bucket_bytes_cap),
      divFactor_(kUnsetDivFactor),
      comm_hook_(nullptr) {
  C10_LOG_API_USAGE_ONCE("torch.distributed.ddp.reducer");
  TORCH_CHECK(replicas_.size() >= 1, "Expected at least one model replica.");
  TORCH_CHECK(replicas_[0].size() >= 1, "Expected at least one parameter.");

  // If `expect_sparse_gradients` is not specified, initialize it such that
  // we do not expect sparse gradients for any parameter.
  if (expect_sparse_gradients_.empty()) {
    expect_sparse_gradients_ = std::vector<std::vector<bool>>(
        replicas_.size(), std::vector<bool>(replicas_[0].size(), false));
  }
  TORCH_INTERNAL_ASSERT(expect_sparse_gradients_.size() == replicas_.size());

  // Corresponding params' layouts (strides) must match across
  // replicas within this process and across processes.
  // (see Note:  "Gradient Layout Contract" in initialize_buckets).
  verify_replicas_within_process();
  verify_replica0_across_processes();

  // Initialize variable bucketing.
  // This can be reinitialized later after capturing runtime information.
  {
    std::lock_guard<std::mutex> lock(mutex_);
    initialize_buckets(std::move(bucket_indices));
  }

  // All variables are expected to have their `grad_fn` set to the gradient
  // accumulation function (since they are leafs in the autograd graph).
  // We store pointers to these functions such that we can check if they are
  // used in an autograd pass. If they are not, we know their grad tensors
  // can be marked as ready for reduction.
  {
    const auto replica_count = replicas_.size();
    grad_accumulators_.resize(replica_count);
    for (size_t replica_index = 0; replica_index < replica_count;
         replica_index++) {
      const auto variable_count = replicas_[replica_index].size();
      grad_accumulators_[replica_index].resize(variable_count);
      for (size_t variable_index = 0; variable_index < variable_count;
           variable_index++) {
        auto& variable = replicas_[replica_index][variable_index];
        const auto index = VariableIndex(replica_index, variable_index);

        // The gradient accumulator function is lazily initialized once.
        // Therefore we can use its presence in the autograd graph as
        // evidence that the parameter has participated in an iteration.
        auto grad_accumulator =
            torch::autograd::impl::grad_accumulator(variable);

#ifndef _WIN32
        using torch::distributed::autograd::ThreadLocalDistAutogradContext;
#endif
        // Hook to execute after the gradient accumulator has executed.
        hooks_.emplace_back(
            grad_accumulator->add_post_hook(
                torch::make_unique<torch::autograd::utils::LambdaPostHook>(
                    [=](const torch::autograd::variable_list& outputs,
                        const torch::autograd::variable_list& /* unused */) {
#ifndef _WIN32
                      this->rpc_context_.set(
                          ThreadLocalDistAutogradContext::getContextPtr());
#endif
                      this->autograd_hook(index);
                      return outputs;
                    })),
            grad_accumulator);

        // Map raw function pointer to replica index and parameter index.
        // This is used later on when the autograd graph is traversed
        // to check for parameters for which no gradient is computed.
        func_[grad_accumulator.get()] = index;

        // The gradient accumulator is stored as weak_ptr in the autograd
        // metadata of the variable, so we have to keep it alive here for
        // the raw pointer to be valid.
        grad_accumulators_[replica_index][variable_index] =
            std::move(grad_accumulator);
      }
    }
  }

  // Initialize backward stats vector.
  {
    const auto replica_count = replicas_.size();
    backward_stats_.resize(replica_count);
    const auto variable_count = replicas_[0].size();
    std::for_each(
        backward_stats_.begin(),
        backward_stats_.end(),
        [=](std::vector<int64_t>& v) { v.resize(variable_count); });
  }

  // See Note [Skip allreducing local_used_maps_dev]
  if (find_unused_parameters_) {
    // Initialize locally used parameter maps
    {
      const auto replica_count = replicas_.size();
      const auto variable_count = replicas_[0].size();
      local_used_maps_.resize(replica_count);
      local_used_maps_dev_.resize(replica_count);

      for (size_t i = 0; i < replica_count; i++) {
        at::TensorOptions options;
        options = options.dtype(at::kInt);

        if (replicas_[i][0].is_cuda()) {
          at::DeviceGuard g(replicas_[i][0].device());
          local_used_maps_[i] = at::zeros(
              {static_cast<long>(variable_count)}, options.pinned_memory(true));
        } else {
          local_used_maps_[i] =
              at::zeros({static_cast<long>(variable_count)}, options);
        }

        // This tensor needs to be on the same device as replica because backend
        // such as NCCL may not support CPU tensors, and hence it might not work
        // if we always put it on CPU.
        options = options.device(replicas_[i][0].device());
        local_used_maps_dev_[i] =
            at::empty({static_cast<long>(variable_count)}, options);
      }
    }
  }
}

// Note [Skip allreducing local_used_maps_dev]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// If find_unused_parameters_ is set to false, there is no need to allreduce
// local_used_maps_dev_, because all parameters will be reduced anyway.
// Therefore, we can avoid allocating memory for local_used_maps and
// local_used_maps_dev_ if find_unused_parameters_ is false.

// Note [DDP Communication Hook]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// If DDP communication hook is not registered, the reducer reduces the buckets
// by just calling allreduce. If registered, it calls the hook and uses future
// work handle. If registered, reducer also skips dividing grads by world size.
// The reason for this is that the communication hook is expected to completely
// override how we perform communication and the user should have complete
// control over how the grads are handled.
//
// DDP communication hook is an enhancement that provides a hook which can be
// used to override how DDP communicates gradients across ranks, this can be
// used for algorithms like Gradient Compression/GossipGrad. This hook can be
// registered from Python API using `register_comm_hook`. `PythonCommHook`
// enables registering a Python hook and is a subclass of `CommHookInterface`.
// `CommHookInterface` can be used to implement CPP hooks in the future.

Reducer::~Reducer() noexcept(false) {
  // Remove all hooks on variables registered by this Reducer. This is necessary
  // to make DDP failure recoverable. Otherwise, multiple Reducer instances
  // (from recoveries) will add their hooks to the original model, and those
  // hooks will try to invoke methods on a deleted Reducer objects.
  for (auto& hook : hooks_) {
    auto& key = hook.first;
    auto& grad_accumulator = hook.second;
    TORCH_CHECK(
        grad_accumulator->del_post_hook(key),
        "Reducer attempts to delete a non-existing hook.");
  }
}

// Verifies replicas in this process treat the same number of params,
// all params require grad, and corresponding params across replicas
// have the same dtype/size/layout.
void Reducer::verify_replicas_within_process() {
  const auto replica_count = replicas_.size();
  for (size_t replica_index = 0; replica_index < replica_count;
       replica_index++) {
    const auto variable_count = replicas_[replica_index].size();
    TORCH_CHECK(
        replicas_[replica_index].size() == replicas_[0].size(),
        "Model replicas must have an equal number of parameters.");
    TORCH_CHECK(
        expect_sparse_gradients_[replica_index].size() ==
            expect_sparse_gradients_[0].size(),
        "Expected number of entries in expect_sparse_gradients ",
        "to be equal across replicas.");
    for (size_t variable_index = 0; variable_index < variable_count;
         variable_index++) {
      TORCH_CHECK(
          replicas_[replica_index][variable_index].requires_grad(),
          "Variables must require gradients (have `requires_grad` set).");
      TORCH_CHECK(
          replicas_[replica_index][variable_index].sizes() ==
              replicas_[0][variable_index].sizes(),
          "Variables across model replicas must have identical sizes.");
      TORCH_CHECK(
          replicas_[replica_index][variable_index].strides() ==
              replicas_[0][variable_index].strides(),
          "Variables across model replicas must have identical strides.");
      TORCH_CHECK(
          replicas_[replica_index][variable_index].dtype() ==
              replicas_[0][variable_index].dtype(),
          "Variables across model replicas must have identical dtype.");
      TORCH_CHECK(
          expect_sparse_gradients_[replica_index][variable_index] ==
              expect_sparse_gradients_[0][variable_index],
          "Expected the same variables across replicas to either both ",
          "or neither expect a sparse gradient.");
    }
  }
}

// Verifies corresponding params in replica 0 have the same sizes/strides
// across processes.
void Reducer::verify_replica0_across_processes() {
  size_t i = 0;
  for (const auto& t : replicas_[0]) {
    i += 2 * t.dim();
  }
  at::TensorOptions options;
  options = options.dtype(at::kLong);
  auto metadata = at::empty({static_cast<long>(i)}, options);

  // Technically, process 0 is the broadcast source, so only process 0 needs
  // to populate metadata.  But no harm keeping work aligned across processes.
  auto metadata_accessor = metadata.accessor<int64_t, 1>();
  i = 0;
  for (const auto& t : replicas_[0]) {
    for (const auto& sz : t.sizes()) {
      metadata_accessor[i++] = sz;
    }
    for (const auto& str : t.strides()) {
      metadata_accessor[i++] = str;
    }
  }

  auto metadata_dev = metadata.clone().to(replicas_[0][0].device());
  std::vector<at::Tensor> vec{metadata_dev};
  process_group_->broadcast(vec)->wait();

  // Technically, process 0 doesn't need to double-check metadata, because it
  // was the source.  But no harm keeping work aligned.
  auto control = at::empty({static_cast<long>(i)}, options);
  control.copy_(metadata_dev, /*non_blocking=*/false);
  auto control_accessor = control.accessor<int64_t, 1>();
  i = 0;
  for (size_t p = 0; p < replicas_[0].size(); p++) {
    const auto& t = replicas_[0][p];
    // I'd like to include which process we are in the message,
    // but ProcessGroup::getRank is not public!
    for (const auto& sz : t.sizes()) {
      TORCH_CHECK(
          sz == control_accessor[i++],
          "replicas[0][",
          p,
          "] in this process"
          " with sizes ",
          t.sizes(),
          " appears not to match sizes of the same param in process 0.");
    }
    for (const auto& str : t.strides()) {
      TORCH_CHECK(
          str == control_accessor[i++],
          "replicas[0][",
          p,
          "] in this process"
          " with strides ",
          t.strides(),
          " appears not to match strides of the same param in process 0.");
    }
  }
}

void Reducer::check_grad_layout(
    const at::Tensor& grad,
    const at::Tensor& bucket_view) {
  // Ensure that the gradient type matches the bucket type.
  TORCH_CHECK(
      grad.options().type_equal(bucket_view.options()),
      "Expected ",
      bucket_view.toString(),
      ", got ",
      grad.toString());
  TORCH_INTERNAL_ASSERT(grad.device() == bucket_view.device());
  TORCH_INTERNAL_ASSERT(grad.numel() == bucket_view.numel());
  // AccumulateGrad doesn't HAVE to obey the grad layout contract.
  // The penalty for disobedience is reduced performance, not numerical
  // death. Warnings here help diagnose poor DDP performance.
  if (grad.strides() != bucket_view.strides()) {
    TORCH_WARN_ONCE(
        "Grad strides do not match bucket view strides. "
        "This may indicate grad was not created according to the "
        "gradient layout contract, or that the param's strides "
        "changed since DDP was constructed.  This is not an error, "
        "but may impair performance.\n"
        "grad.sizes() = ",
        grad.sizes(),
        ", strides() = ",
        grad.strides(),
        "\n",
        "bucket_view.sizes() = ",
        bucket_view.sizes(),
        ", strides() = ",
        bucket_view.strides());
  }
  if (!gradient_as_bucket_view_) {
    TORCH_INTERNAL_ASSERT(!grad.is_alias_of(bucket_view));
  }
}

void Reducer::copy_grad_to_bucket(at::Tensor& grad, at::Tensor& bucket_view) {
  // See Note [DDP Communication Hook]
  if (comm_hook_ == nullptr) {
    // imitates wrapped_scalar_tensor in ATen/native/BinaryOps.cpp
    auto wrapped = c10::scalar_to_tensor(double(1.) / divFactor_);
    wrapped.unsafeGetTensorImpl()->set_wrapped_number(true);
    // Divides while copying into the bucket view.
    at::native::mul_out(bucket_view, grad, wrapped);
  } else {
    bucket_view.copy_(grad);
  }
}

void Reducer::mark_variable_ready_dense(VariableIndex index) {
  const auto replica_index = index.replica_index;
  const auto variable_index = index.variable_index;
  const auto& bucket_index = variable_locators_[variable_index];
  auto& bucket = buckets_[bucket_index.bucket_index];
  auto& replica = bucket.replicas[replica_index];
  auto& variable = replica.variables[bucket_index.intra_bucket_index];
  const auto offset = replica.offsets[bucket_index.intra_bucket_index];
  const auto length = replica.lengths[bucket_index.intra_bucket_index];
  auto& bucket_view = replica.bucket_views_in[bucket_index.intra_bucket_index];

  // Copy contents of gradient tensor to bucket tensor.
  // If the gradient is not set, we assume it wasn't computed
  // as part of the current backwards pass, and zero the part
  // of the bucket it would otherwise hold.
  runGradCallbackForVariable(variable, [&](auto& grad) {
    if (grad.defined()) {
      this->check_grad_layout(grad, bucket_view);
      // When gradient_as_bucket_view_ is false, or even when
      // gradient_as_bucket_view_ is true, in rare cases users may set grad to
      // be None after every iteration. In these cases, grad and bucket_view are
      // pointing to different storages and thus need to copy grads to
      // bucket_view. If gradient_as_bucket_view_ is set as true, let grad point
      // to bucket_view. If grad has already been set as views of buckets in
      // previous iterations, no copy is needed.
      if (!grad.is_alias_of(bucket_view)) {
        this->copy_grad_to_bucket(grad, bucket_view);
        if (gradient_as_bucket_view_) {
          // Let grad point to bucket_view buffer.
          grad = bucket_view;
          // The grad is modified and need to be written back.
          return true;
        }
      } else {
        // If grad and bucket view point to the same storage, no need to copy
        if (comm_hook_ == nullptr) {
          bucket_view.div_(divFactor_);
        }
      }
    } else {
      bucket_view.zero_();
    }
    // The grad is not modified and doesn't need to be written back.
    return false;
  });
}

void Reducer::mark_variable_ready_sparse(VariableIndex index) {
  const auto replica_index = index.replica_index;
  const auto variable_index = index.variable_index;
  const auto& bucket_index = variable_locators_[variable_index];
  auto& bucket = buckets_[bucket_index.bucket_index];
  auto& replica = bucket.replicas[replica_index];
  auto& variable = replica.variables[bucket_index.intra_bucket_index];

  runGradCallbackForVariable(variable, [&](auto& grad) {
    TORCH_CHECK(grad.defined(), "Expected sparse gradient to be defined.");
    TORCH_CHECK(
        grad.options().layout() == c10::kSparse,
        "Expected variable to have sparse gradient.");

    // Sparse tensors cannot be grouped together with other sparse tensors
    // in a single reduction operation like we can for dense tensors.
    // Therefore, the `offsets` and `lengths` vectors in the bucket replica
    // struct are empty, and there is no pre-existing accumulation tensor.
    // Directly assign the sparse tensor to the `contents` field.
    replica.contents = grad;
    // See Note [DDP Communication Hook]
    if (comm_hook_ == nullptr) {
      replica.contents.div_(divFactor_);
    }
    // The grad is modified in place and needs to be written back.
    return true;
  });
}

std::vector<std::vector<at::Tensor>> Reducer::get_bucket_tensors() const {
  std::lock_guard<std::mutex> lock(mutex_);
  std::vector<std::vector<at::Tensor>> bucketTensors;
  bucketTensors.reserve(buckets_.size());
  for (const auto& bucket : buckets_) {
    std::vector<at::Tensor> tensors;
    tensors.reserve(bucket.replicas.size());
    for (const auto& rep : bucket.replicas) {
      tensors.push_back(rep.contents);
    }
    bucketTensors.push_back(std::move(tensors));
  }
  return bucketTensors;
}

void Reducer::set_forward_pass_work_handle(
    std::shared_ptr<c10d::ProcessGroup::Work> forwardPassWorkHandle,
    bool useStaticWorldSize) {
  std::lock_guard<std::mutex> lock(mutex_);
  forwardPassWorkHandle_.workHandle = std::move(forwardPassWorkHandle);
  forwardPassWorkHandle_.useStaticWorldSize = useStaticWorldSize;
}

std::vector<at::Tensor> Reducer::get_local_used_maps_on_device() const {
  std::lock_guard<std::mutex> lock(mutex_);
  return local_used_maps_dev_;
}

void Reducer::push_rebuilt_params_for_all_indices() {
  std::lock_guard<std::mutex> lock(mutex_);
  if (!should_rebuild_buckets() || !rebuilt_param_indices_.empty()) {
    return;
  }
  const auto replica_count = replicas_.size();
  for (size_t replica_index = 0; replica_index < replica_count;
       ++replica_index) {
    const auto variable_count = replicas_[replica_index].size();
    for (size_t variable_index = 0; variable_index < variable_count;
         ++variable_index) {
      const auto index = VariableIndex(replica_index, variable_index);
      push_rebuilt_params(index);
    }
  }
}

void Reducer::push_rebuilt_params(const VariableIndex& index) {
  if (should_rebuild_buckets() && index.replica_index == 0) {
    rebuilt_params_.push_back(
        replicas_[index.replica_index][index.variable_index]);
    rebuilt_param_indices_.push_back(index.variable_index);
  }
}

// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.
void Reducer::autograd_hook(VariableIndex index) {
  std::lock_guard<std::mutex> lock(this->mutex_);

  // See Note [Skip allreducing local_used_maps_dev]
  if (find_unused_parameters_) {
    // Since it gets here, this param has been used for this iteration. We want
    // to mark it in local_used_maps_. During no_sync session, the same var can
    // be set multiple times, which is OK as does not affect correctness. As
    // long as it is used once during no_sync session, it is marked as used.
    local_used_maps_[index.replica_index][index.variable_index] = 1;
  }

  // Ignore if we don't expect to be called.
  // This may be the case if the user wants to accumulate gradients
  // for number of iterations before reducing them.
  if (!expect_autograd_hooks_) {
    return;
  }

  // Rebuild bucket only if 1) it is the first time to rebuild bucket 2)
  // find_unused_parameters_ is false, currently it does not support when there
  // are unused parameters 3) this backward pass needs to run allreduce. Here,
  // we just dump tensors and their parameter indices into rebuilt_params_ and
  // rebuilt_param_indices_ based on gradient arriving order, and then at the
  // end of finalize_backward(), buckets will be rebuilt based on
  // rebuilt_params_ and rebuilt_param_indices_, and then will be broadcasted
  // and initialized. Also we only need to dump tensors and parameter indices of
  // one replica.
  push_rebuilt_params(index);

  // If `find_unused_parameters_` is true there may be model parameters that
  // went unused when computing the model output, they won't be part of the
  // autograd graph, and won't receive gradients. These parameters are
  // discovered in the `prepare_for_backward` function and their indexes stored
  // in the `unused_parameters_` vector.
  if (!has_marked_unused_parameters_ && find_unused_parameters_) {
    has_marked_unused_parameters_ = true;
    for (const auto& unused_index : unused_parameters_) {
      mark_variable_ready(unused_index);
    }
  }

  // Finally mark variable for which this function was originally called.
  mark_variable_ready(index);
}

void Reducer::mark_variable_ready(VariableIndex index) {
  const auto replica_index = index.replica_index;
  const auto variable_index = index.variable_index;
  TORCH_CHECK(replica_index < replicas_.size(), "Out of range replica index.");
  TORCH_CHECK(
      variable_index < variable_locators_.size(),
      "Out of range variable index.");
  backward_stats_[replica_index][variable_index] =
      current_time_in_nanos() - backward_stats_base_;

  // Any time we mark a variable ready (be it in line due to unused parameters,
  // or via an autograd hook), we require a call to the finalize function. If
  // this doesn't happen before the next iteration (or call to
  // `prepare_for_backwards`), we know something is wrong.
  require_finalize_ = true;

  const auto& bucket_index = variable_locators_[variable_index];
  auto& bucket = buckets_[bucket_index.bucket_index];
  auto& replica = bucket.replicas[replica_index];

  // Something is wrong if all variables contained in this bucket replica have
  // already been marked as ready.
  if (replica.pending == 0) {
    const auto common_error = c10::str(
        "Expected to mark a variable ready only once. ",
        "",
        "This error is caused by one of the following reasons: ",
        "1) Use of a module parameter outside the `forward` function. ",
        "Please make sure model parameters are not shared across multiple ",
        "concurrent forward-backward passes",
        "2) Reused parameters in multiple reentrant backward passes. For ",
        "example, if you use multiple `checkpoint` functions to wrap the ",
        "same part of your model, it would result in the same set of ",
        "parameters been used by different reentrant backward passes ",
        "multiple times, and hence marking a variable ready multiple times. ",
        "DDP does not support such use cases yet.");
    TORCH_CHECK(
        has_marked_unused_parameters_,
        common_error,
        "3) Incorrect unused parameter detection. The return value of the ",
        "`forward` function is inspected by the distributed data parallel ",
        "wrapper to figure out if any of the module's parameters went ",
        "unused. For unused parameters, DDP would not expect gradients from ",
        "then. However, if an unused parameter becomes part of the autograd ",
        "graph at a later point in time (e.g., in a reentrant backward when ",
        "using `checkpoint`), the gradient will show up unexpectedly. If all ",
        "parameters in the model participate in the backward pass, you can ",
        "disable unused parameter detection by passing the keyword argument ",
        "`find_unused_parameters=False` to ",
        "`torch.nn.parallel.DistributedDataParallel`.");
    TORCH_CHECK(!has_marked_unused_parameters_, common_error);
  }

  // If it was scheduled, wait on allreduce in forward pass that tells us
  // division factor based on no. of currently participating processes.
  if (divFactor_ == kUnsetDivFactor) {
    divFactor_ = process_group_->getSize();
    auto& workHandle = forwardPassWorkHandle_.workHandle;
    if (workHandle && !forwardPassWorkHandle_.useStaticWorldSize) {
      workHandle->wait();
      auto results = workHandle->result();
      // Guard against the results being empty
      TORCH_INTERNAL_ASSERT(results.size() > 0);
      at::Tensor& res = results.front();
      divFactor_ = res.item().to<int>();
    }
  }

  if (bucket.expect_sparse_gradient) {
    mark_variable_ready_sparse(index);
  } else {
    mark_variable_ready_dense(index);
  }

  // TODO(@pietern): Make this work for both CPU/CUDA tensors.
  // When using CPU tensors we don't need to do this.
  // // Record event so that we can wait for all of them.
  // auto& event = replica.events[bucket_index.intra_bucket_index];
  // event.record();

  // Check if this was the final gradient for this bucket.
  if (--replica.pending == 0) {
    // Kick off reduction if all replicas for this bucket are ready.
    if (--bucket.pending == 0) {
      mark_bucket_ready(bucket_index.bucket_index);
    }
  }

  // Run finalizer function and kick off reduction for local_used_maps once the
  // final bucket was marked ready.
  if (next_bucket_ == buckets_.size()) {
    // See Note [Skip allreducing local_used_maps_dev]
    if (find_unused_parameters_) {
      // H2D from local_used_maps_ to local_used_maps_dev_
      for (size_t i = 0; i < local_used_maps_.size(); i++) {
        // We do async H2D to avoid the blocking overhead. The async copy and
        // allreduce respect the current stream, so will be sequenced correctly.
        local_used_maps_dev_[i].copy_(local_used_maps_[i], true);
      }
      local_used_work_ = process_group_->allreduce(local_used_maps_dev_);
    }

    // The autograd engine uses the default stream when running callbacks, so we
    // pass in the current CUDA stream in case it is not the default.
    c10::DeviceType deviceType = replica.contents.device().type();
    const c10::impl::VirtualGuardImpl guard =
        c10::impl::VirtualGuardImpl{deviceType};
    const c10::Stream currentStream =
        guard.getStream(replica.contents.device());
    torch::autograd::Engine::get_default_engine().queue_callback([=] {
      std::lock_guard<std::mutex> lock(this->mutex_);
      // Run callback with the current stream
      c10::OptionalStreamGuard currentStreamGuard{currentStream};
      this->finalize_backward();
    });
  }
}

// Called when the bucket at the specified index is ready to be reduced.
void Reducer::mark_bucket_ready(size_t bucket_index) {
  TORCH_INTERNAL_ASSERT(bucket_index >= next_bucket_);

  // Buckets are reduced in sequence. Ignore this bucket if
  // it's not its turn to be reduced.
  if (bucket_index > next_bucket_) {
    return;
  }

  // Keep going, until we either:
  // - have kicked off reduction for all buckets, or
  // - found a bucket that's not yet ready for reduction.
  for (; next_bucket_ < buckets_.size() && buckets_[next_bucket_].pending == 0;
       next_bucket_++) {
    auto& bucket = buckets_[next_bucket_];
    std::vector<at::Tensor> tensors;
    tensors.reserve(bucket.replicas.size());
    for (const auto& replica : bucket.replicas) {
      // TODO(@pietern): Ensure proper synchronization with the CUDA events
      // that recorded copies into this contents tensor. If these copies are
      // executed on non-default streams, the current stream for the device
      // that holds the contents tensor must wait on these events.
      //
      // As long as autograd uses the default stream for every device,
      // these operations are implicitly sequenced, and we don't need to
      // do any extra synchronization here.
      //
      tensors.push_back(replica.contents);
    }
    // See Note [DDP Communication Hook]
    // TODO(@sinannasir): merge `work` and `future_work`. Related to GH Issue
    // #41266.
    if (comm_hook_ == nullptr) {
      bucket.work = process_group_->allreduce(tensors);
    } else {
      bucket.future_work = comm_hook_->runHook(GradBucket(tensors));
    }
  }
}

void Reducer::initialize_buckets(
    std::vector<std::vector<size_t>> bucket_indices) {
  // If initialize_buckets is called inside DDP constructor, then
  // it does not matter rpc context ptr is nullptr or not, as grad
  // will not be mutated.
  // If initialize_buckets is called during training loop, e.g, inside
  // rebuild_buckets(), since grad could be mutated and be pointed to
  // bucket_view, then it needs to check rpc context ptr is nullptr or not,
  // If rpc context ptr is nullptr, mutate variable.grad(); otherwise,
  // mutate grad in rpc context.
#ifndef _WIN32
  using torch::distributed::autograd::ThreadLocalDistAutogradContext;
  this->rpc_context_.set(ThreadLocalDistAutogradContext::getContextPtr());
#endif

  // This shouldn't be called if we're expecting autograd hooks to fire.
  TORCH_CHECK(
      !expect_autograd_hooks_,
      "`initialize_buckets` must NOT be called during autograd execution.");

  // Clear current bucket assignment.
  buckets_.clear();
  variable_locators_.clear();

  // Ensure we have a bucket index for every variable.
  variable_locators_.resize(replicas_[0].size());

  // Iterate over buckets.
  const auto bucket_count = bucket_indices.size();
  const auto replica_count = replicas_.size();
  buckets_.reserve(bucket_count);
  for (size_t bucket_index = 0; bucket_index < bucket_count; bucket_index++) {
    Bucket bucket;

    // TODO(@pietern): Validate indices.
    // Must be non-empty, unique, and unique across buckets.
    TORCH_CHECK(
        bucket_indices[bucket_index].size() > 0, "Empty bucket specified.");

    // Variables that expect sparse gradients must have their own bucket.
    if (bucket_indices[bucket_index].size() == 1) {
      const auto variable_index = bucket_indices[bucket_index].front();
      bucket.expect_sparse_gradient =
          expect_sparse_gradients_[0][variable_index];
    } else {
      for (const auto variable_index : bucket_indices[bucket_index]) {
        TORCH_CHECK(
            !expect_sparse_gradients_[0][variable_index],
            "Buckets with more than one variable cannot include variables ",
            "that expect a sparse gradient.");
      }
    }

    // Iterate over model replicas.
    for (size_t replica_index = 0; replica_index < replica_count;
         replica_index++) {
      BucketReplica replica;

      if (bucket.expect_sparse_gradient) {
        const auto variable_index = bucket_indices[bucket_index].front();
        const auto& variable = replicas_[replica_index][variable_index];
        TORCH_INTERNAL_ASSERT(bucket_indices[bucket_index].size() == 1);
        replica.variables = {variable};
      } else {
        at::TensorOptions options;
        size_t offset = 0;

        // Iterate over bucket variables.
        for (const auto variable_index : bucket_indices[bucket_index]) {
          TORCH_CHECK(
              variable_index < replicas_[replica_index].size(),
              "Out of range variable index specified.");
          const auto& variable = replicas_[replica_index][variable_index];
          if (!options.has_device()) {
            options = options.device(variable.device());
          } else {
            TORCH_CHECK(
                variable.device() == options.device(),
                "All parameters in a bucket must be ",
                "placed on the same device.");
          }
          if (!options.has_dtype()) {
            options = options.dtype(variable.dtype());
          } else {
            TORCH_CHECK(
                variable.dtype() == options.dtype(),
                "All parameters in a bucket must have the same dtype.");
          }
          const auto length = variable.numel();
          replica.variables.push_back(variable);
          replica.offsets.push_back(offset);
          replica.lengths.push_back(length);
          offset += length;
        }

        // Allocate bucket contents tensor.
        replica.contents = at::empty({static_cast<long>(offset)}, options);

        // Note:  "Gradient Layout Contract"
        //
        // Here, create views into the contents tensor for each variable's grad.
        // Views serve as entry points to copy_ each grad's data in/out of the
        // flat contents tensor.
        //
        // Gradients may have dense memory but non-row-major-contiguous strides
        // (e.g. channels_last or channels_last_3d). For coalesced accesses
        // during copy_s, it's beneficial for each view's layout to match its
        // grad's layout.
        //
        // Specifically, we expect torch/csrc/autograd/AccumulateGrad.h produces
        // grads that obey there "Gradient Layout Contract":
        //   (1) if variable.is_non_overlapping_and_dense(), the stashed grad's
        //       strides match variable.
        //   (2) else, stashed grad is rowmajor contiguous.
        // and create views to match.
        //
        // If AccumulateGrad breaks the contract, and produces a grad with an
        // unexpected layout, performance will degrade due to poor memory access
        // patterns when copy_ing grad data in and out of its bucket view.
        // However, numerics remain correct, because the bucket view is the same
        // on either end of the raw allreduce.  bucket_view_in.copy(grad)
        // tranposes
        // (+ densifies) to the bucket view's layout, the data is allreduced,
        // then grad.copy_(bucket_view_out) transposes it back to grad's layout.
        //
        // The only way the numerics can go haywire is if the bucket views
        // themselves have different layouts across processes (or replicas).
        // Bucket views' sizes and strides are set based on param layouts, using
        // the same logic that (we expect) AccumulateGrad uses for their grads.
        // Therefore, the only way a bucket view could have different layouts in
        // different processes is if its param has a different layout in
        // different processes. We can check that param layouts match across
        // processes and replicas in Reducer's constructor by allreducing some
        // metadata.  Checking just once won't catch if someone messes with
        // param layouts over time, but not messing with params after DDP
        // construction is already a documented constraint.
        initialize_bucket_views(replica, replica.contents);
      }

      // Add bucket replica to enclosing bucket.
      bucket.replicas.push_back(std::move(replica));
    }

    // Map participating variables to this bucket.
    // This is identical across replicas so we only need to do this once.
    size_t intra_bucket_index = 0;
    for (const auto variable_index : bucket_indices[bucket_index]) {
      TORCH_CHECK(
          variable_index < variable_locators_.size(),
          "Out of range variable index specified.");
      variable_locators_[variable_index] = VariableLocator(
        bucket_index, intra_bucket_index++);
    }
    bucket.variable_indices = std::move(bucket_indices[bucket_index]);

    buckets_.push_back(std::move(bucket));
  }
}

// (see Note:  "Gradient Layout Contract" in initialize_buckets).
void Reducer::initialize_bucket_views(
    Reducer::BucketReplica& replica,
    at::Tensor& contents) {
  for (size_t i = 0; i < replica.variables.size(); i++) {
    auto& v = replica.variables[i];
    const auto offset = replica.offsets[i];
    const auto length = replica.lengths[i];
    if (v.is_non_overlapping_and_dense()) {
      // If the param's memory is dense, match its layout, anticipating
      // the autograd engine (AccumulateGrad) will also create gradients
      // matching its layout.
      replica.bucket_views_in.push_back(
          contents.as_strided(v.sizes(), v.strides(), offset));
    } else {
      // Fall back to a C-style contiguous view, again anticipating
      // AccumulateGrad will do the same when stashing grads for non-dense
      // params.
      replica.bucket_views_in.push_back(
          contents.narrow(0, offset, length).view(v.sizes()));
    }
    // By default `bucket_views_out` and `bucket_views_in` are
    // essentially the same thing.
    replica.bucket_views_out = replica.bucket_views_in;

    // If gradient_as_bucket_view_ is set as true, then there are two cases to
    // handle: initialize_bucket_views could be called inside initialize_buckets
    // when rebuild_buckets, if grad has already been defined/calculated in
    // previous iteration, old grad needs to be copied into new bucket_view and
    // let grad point to the new bucket_view, initialize_bucket_views could also
    // be called inside initialize_buckets during construction. Grads are not
    // defined during construction time, in this case, do not let grad point to
    // bucket_view, because grads should be kept as being undefined for globally
    // unused parameters.
    if (gradient_as_bucket_view_) {
      auto& bucket_view = replica.bucket_views_in.back();
      runGradCallbackForVariable(v, [&](auto& grad) {
        if (grad.defined() && !grad.is_alias_of(bucket_view)) {
          bucket_view.copy_(grad);
          grad = bucket_view;
          // The grad is modefied and needs to be written back.
          return true;
        }
        // The grad is not modified and does not need to be written back.
        return false;
      });
    }
  }
}

// (see Note:  "Gradient Layout Contract" in initialize_buckets).
void Reducer::populate_bucket_views_out(
    Reducer::BucketReplica& replica,
    at::Tensor& tensor) {
  replica.bucket_views_out.clear();
  for (size_t i = 0; i < replica.variables.size(); i++) {
    const auto& v = replica.variables[i];
    const auto offset = replica.offsets[i];
    const auto length = replica.lengths[i];
    if (v.is_non_overlapping_and_dense()) {
      // If the param's memory is dense, match its layout, anticipating
      // the autograd engine (AccumulateGrad) will also create gradients
      // matching its layout.
      replica.bucket_views_out.push_back(
          tensor.as_strided(v.sizes(), v.strides(), offset));
    } else {
      // Fall back to a C-style contiguous view, again anticipating
      // AccumulateGrad will do the same when stashing grads for non-dense
      // params.
      replica.bucket_views_out.push_back(
          tensor.narrow(0, offset, length).view(v.sizes()));
    }
  }
}

// Traverse the autograd graph starting at the specified output.
// All parameters for which we have a pointer to their gradient accumulation
// functions, but don't show up in the autograd graph will be marked ready for
// for reduction as soon as the first autograd hook is called. This is not
// done immediately because the model output may be ignored, and we only
// want to start performing reductions on `torch.autograd.backward()`.
void Reducer::prepare_for_backward(
    const std::vector<torch::autograd::Variable>& outputs) {
  std::lock_guard<std::mutex> lock(mutex_);
  std::unordered_set<torch::autograd::Node*> seen;
  std::vector<torch::autograd::Node*> queue;

  // Reset accounting.
  expect_autograd_hooks_ = true;
  next_bucket_ = 0;
  backward_stats_base_ = current_time_in_nanos();
  for (auto& bucket : buckets_) {
    for (auto& replica : bucket.replicas) {
      replica.pending = replica.variables.size();
    }
    bucket.pending = bucket.replicas.size();
  }

  // Reset unused parameter accounting.
  has_marked_unused_parameters_ = false;
  unused_parameters_.clear();

  // If find_unused_parameters_ is false, we assume that autograd hooks for ALL
  // variables will be called, and we don't have to search the autograd graph
  // for presence of these hooks.
  if (!find_unused_parameters_) {
    return;
  }

  // Seed queue with the grad functions of all outputs.
  for (const auto& output : outputs) {
    const auto& grad_fn = output.grad_fn();
    if (grad_fn) {
      queue.push_back(grad_fn.get());
    }
  }

  // Traverse the autograd graph starting at the specified output.
  while (!queue.empty()) {
    auto fn = queue.back();
    queue.pop_back();
    for (const auto& edge : fn->next_edges()) {
      if (auto next_ptr = edge.function.get()) {
        const bool was_inserted = seen.insert(next_ptr).second;
        if (was_inserted) {
          queue.push_back(next_ptr);
        }
      }
    }
  }

  // Find accumulator functions that don't show up in this graph.
  for (const auto& it : func_) {
    // If the accumulator function is present in the graph, we know
    // a gradient will be computed for the corresponding parameter.
    if (seen.count(it.first) > 0) {
      continue;
    }

    unused_parameters_.push_back(it.second);
  }
}

void Reducer::copy_bucket_to_grad(
    torch::autograd::Variable& variable,
    Reducer::BucketReplica& replica,
    size_t intra_bucket_index,
    bool global_unused) {
  const auto& bucket_view = replica.bucket_views_out[intra_bucket_index];
  runGradCallbackForVariable(variable, [&](auto& grad) {
    // If a parameter is globally unused, we keep its grad untouched.
    if (!global_unused) {
      if (!grad.defined()) {
        // Creates grad according to the "Gradient Layout Contract"
        // (see torch/csrc/grad/AccumulateGrad.h)
        grad =
            torch::autograd::utils::clone_obey_contract(bucket_view, variable);
      } else {
        grad.copy_(bucket_view);
      }
      // The grad is modified and needs to be written back.
      return true;
    }
    // The grad is not modified.
    return false;
  });
}

// A bucket with one or more dense tensors needs to be unflattened.
void Reducer::finalize_bucket_dense(Bucket& bucket) {
  for (size_t replica_index = 0; replica_index < bucket.replicas.size();
       replica_index++) {
    auto& replica = bucket.replicas[replica_index];
    for (size_t intra_bucket_index = 0;
         intra_bucket_index < replica.variables.size();
         intra_bucket_index++) {
      auto& variable = replica.variables[intra_bucket_index];
      const auto offset = replica.offsets[intra_bucket_index];
      const auto length = replica.lengths[intra_bucket_index];

      bool global_unused = false;
      // See Note [Skip allreducing local_used_maps_dev]
      if (find_unused_parameters_) {
        // Determine if this param has been used globally or not.
        //
        // If the variable was used locally, it is also used globally and then
        // we don't need to wait for the reduction. Otherwise we lazily wait for
        // the reduction to complete, only when we see a variable that was
        // unused locally. Then we end up delaying the synchronization point
        // that local_used_work_->wait() implies. If we don't have any unused
        // parameters at all, we can skip waiting for the work to complete
        // altogether, and cause negligible performance overhead for models
        // where all parameters are used. Such lazily waiting means minimizing
        // performance impact for the big majority of models where all
        // parameters are always used. Then we only pay the overhead cost if
        // there is indeed a parameter that is locally unused, because we need
        // to check if it's also globally unused.
        size_t variable_index = bucket.variable_indices[intra_bucket_index];
        // Note: global_unused might not be global yet. As we lazily wait for
        // the reduction to complete, it becomes really global only if we get to
        // the point as below where we wait for the reduction work, make D2H
        // copy, and update global_unused with the real global consensus, i.e.
        // local_used_maps_reduced_ is true.
        global_unused =
            local_used_maps_[replica_index][variable_index].item<int>() == 0;
        if (global_unused && !local_used_maps_reduced_) {
          // Wait for local_used_maps reduction to complete.
          local_used_work_->wait();
          // D2H from local_used_maps_dev_ to local_used_maps_
          for (size_t i = 0; i < local_used_maps_.size(); i++) {
            local_used_maps_[i].copy_(local_used_maps_dev_[i]);
          }
          global_unused =
              local_used_maps_[replica_index][variable_index].item<int>() == 0;
          local_used_maps_reduced_ = true;
        }
      }

      if (!gradient_as_bucket_view_) {
        copy_bucket_to_grad(
            variable, replica, intra_bucket_index, global_unused);
      } else {
        const auto& bucket_view_out =
            replica.bucket_views_out[intra_bucket_index];
        auto& bucket_view_in = replica.bucket_views_in[intra_bucket_index];
        // If communication_hook is registered, bucket_view_out stores
        // allreduced results in a newly allocated tensor, copy bucket_view_out
        // back to bucket_view_in that referring to replica.content tensor and
        // grad.
        if (!bucket_view_in.is_alias_of(bucket_view_out)) {
          bucket_view_in.copy_(bucket_view_out);
        }
        runGradCallbackForVariable(variable, [&](auto& grad) {
          // If a parameter is globally unused, we keep its grad untouched.
          if (!global_unused) {
            // If grad is globally used but locally unused, let grad point to
            // bucket_view_in
            if (!grad.defined()) {
              grad = bucket_view_in;
            } else {
              if (!grad.is_alias_of(bucket_view_in)) {
                grad.copy_(bucket_view_in);
                TORCH_WARN_ONCE(
                    "Detected at least one parameter gradient is not the "
                    "expected DDP bucket view when setting "
                    "gradient_as_bucket_view=True. This can happen when "
                    "multiple parameters sharing the same gradient. For "
                    "example, param0 and param1 share the same gradient "
                    "grad0. In this case, grad0 would first point to "
                    "bucket_view_in0 when param0 is ready. Later, when "
                    "param1 is ready, it will override grad0 to point to "
                    "bucket_view_in1. However, param0 still expects grad0 "
                    "to point to bucket_view_in0, and hence hit this "
                    "warning. If you saw this message, please double-check if "
                    "the above situation is expected for your application.");
              }
            }
            // The grad is modified and needs to be written back.
            return true;
          }
          // The grad is not modified.
          return false;
        });
      }
    }
  }
}

void Reducer::finalize_backward() {
  // No longer expect autograd hooks to fire after this function returns.
  TORCH_INTERNAL_ASSERT(expect_autograd_hooks_);
  expect_autograd_hooks_ = false;

  // No longer require call to finalize after this function returns.
  TORCH_INTERNAL_ASSERT(require_finalize_);
  require_finalize_ = false;

  // Unset allreduce division factor, as it may change in next backwards pass
  // when running with DDP join mode.
  divFactor_ = kUnsetDivFactor;

  // Check that all buckets were completed and had their work kicked off.
  TORCH_INTERNAL_ASSERT(next_bucket_ == buckets_.size());

  // Wait for asynchronous reduction to complete and unflatten contents.
  for (auto& bucket : buckets_) {
    // See Note [DDP Communication Hook]
    if (comm_hook_ == nullptr) {
      TORCH_INTERNAL_ASSERT(
          bucket.work,
          "Expected bucket.work not to be null. "
          "This may indicate that allreduce hooks were not properly installed.");
      bucket.work->wait();
    } else {
      TORCH_INTERNAL_ASSERT(
          bucket.future_work,
          "Expected bucket.future_work not to be null. "
          "This may indicate that communication hook was not properly installed.");
      bucket.future_work->wait();

      auto future_result =
          comm_hook_->processFuture(bucket.future_work->value());

      for (size_t i = 0; i < future_result.size(); i++) {
        auto& replica = bucket.replicas[i];
        if (bucket.expect_sparse_gradient) {
          replica.contents.copy_(future_result[i]);
        } else {
          // Reinitialize only `bucket_views_out` with the future_result by
          // following the same logic in `initialize_buckets`.
          populate_bucket_views_out(replica, future_result[i]);
        }
      }
    }
    if (!bucket.expect_sparse_gradient) {
      // We don't need to finalize the sparse bucket since the sparse grad and
      // the bucket essentially point to the same storage. As a result, once
      // the allreduce is done, the sparse grads are automatically updated.
      finalize_bucket_dense(bucket);
    }
  }

  // See Note [Skip allreducing local_used_maps_dev]
  if (find_unused_parameters_) {
    // Reset unused parameter accounting.
    for (auto& local_used : local_used_maps_) {
      local_used.fill_(0);
    }
    // Due to the lazy wait, it is possible that reduction of the current
    // iteration is still going when the one for next iteration gets kicked off.
    // For such case, we want to wait explicitly to make sure the reduction does
    // complete before kicking off next one. Otherwise the previous one may
    // interfere, write to the device-side memory and clobber the content of
    // local_unused_maps_dev_.
    if (!local_used_maps_reduced_) {
      local_used_work_->wait();
    }
    local_used_maps_reduced_ = false;
  }
}

void Reducer::runGradCallbackForVariable(
    torch::autograd::Variable& variable,
    GradCallback&& cb) {
  auto context_ptr = rpc_context_.context_ptr.load();
  if (context_ptr == nullptr) {
    cb(variable.mutable_grad());
  } else {
    // Under distributed autograd
#ifndef _WIN32
    context_ptr->runGradCallbackForVariable(variable, std::move(cb));
#endif
  }
}

void Reducer::RpcContext::set(ContextPtr&& new_context_ptr) {
  // We should set 'new_context_ptr' even if it's nullptr. That means the
  // reducer is under a local backward run.
  const auto new_context_raw_ptr = new_context_ptr.get();
  if (context_ptr.exchange(new_context_raw_ptr) != new_context_raw_ptr) {
    // Set the shared ptr to the context only if it's set first time.
    // All call sites should use the same context ptr.
    // Use an atomic to avoid data race from multiple threads.
    context_ptr_holder = std::move(new_context_ptr);
  }
}

void Reducer::sync_bucket_indices(
    std::vector<std::vector<size_t>>& bucket_indices) {
  auto num_buckets = bucket_indices.size();
  std::vector<size_t> bucket_sizes;
  bucket_sizes.reserve(num_buckets);
  int64_t total_size = 0;
  for (size_t i = 0; i < num_buckets; i++) {
    auto bucket_size = bucket_indices.at(i).size();
    bucket_sizes.push_back(bucket_size);
    total_size += bucket_size;
  }

  at::TensorOptions options;
  options = options.dtype(at::kInt);
  options = options.device(replicas_[0][0].device());

  // Group indices and num_bucket together into indices_tensor
  // Broadcast this tensor first, as its size is equal among all processes
  auto indices_tensor = at::empty({total_size + 1}, at::kInt);
  auto indices_accessor = indices_tensor.accessor<int, 1>();
  auto indices_accessor_Index = 0;
  for (size_t i = 0; i < num_buckets; i++) {
    const auto& bucket_size = bucket_indices.at(i).size();
    for (size_t j = 0; j < bucket_size; j++) {
      indices_accessor[indices_accessor_Index++] = bucket_indices[i][j];
    }
  }
  indices_accessor[indices_accessor_Index] = num_buckets;

  // Copy CPU tensor to device tensor, as the process_group_ could be NCCL and
  // it can only broadcast device tensors.
  auto indices_tensor_device = at::empty({total_size + 1}, options);
  indices_tensor_device.copy_(indices_tensor, /*non_blocking=*/true);
  std::vector<at::Tensor> indices_tensor_list = {indices_tensor_device};
  process_group_->broadcast(indices_tensor_list)->wait();
  indices_tensor.copy_(indices_tensor_list.front(), /*non_blocking=*/false);

  // Update num_buckets after receiving it from rank 0
  num_buckets = indices_accessor[indices_accessor_Index];

  // Broadcast bucket_sizes
  auto bucket_sizes_tensor = at::empty({(int64_t)num_buckets}, at::kInt);
  auto bucket_sizes_accessor = bucket_sizes_tensor.accessor<int, 1>();
  for (size_t i = 0; i < num_buckets; i++) {
    // For rank != 0, it is possible that local num buckets bucket_sizes.size()
    // is smaller than broadcasted num_buckets
    bucket_sizes_accessor[i] =
        bucket_sizes.at(std::min(i, (bucket_sizes.size() - 1)));
  }
  auto bucket_sizes_tensor_device = at::empty({(int64_t)num_buckets}, options);
  bucket_sizes_tensor_device.copy_(bucket_sizes_tensor, /*non_blocking=*/true);
  std::vector<at::Tensor> bucket_sizes_tensor_list = {
      bucket_sizes_tensor_device};
  process_group_->broadcast(bucket_sizes_tensor_list)->wait();
  bucket_sizes_tensor.copy_(
      bucket_sizes_tensor_list.front(), /*non_blocking=*/false);

  // Clear bucket_indices first, and then update bucket_indices using received
  // num_buckets, bucket_sizes_tensor and indices_tensor from rank 0
  bucket_indices.clear();
  bucket_indices.reserve(num_buckets);
  indices_accessor_Index = 0;
  for (size_t i = 0; i < num_buckets; i++) {
    const auto& bucket_size = bucket_sizes_accessor[i];
    std::vector<size_t> bucket;
    bucket.reserve(bucket_size);
    for (size_t j = 0; j < bucket_size; j++) {
      bucket.push_back(indices_accessor[indices_accessor_Index++]);
    }
    bucket_indices.emplace_back(std::move(bucket));
  }
}

bool Reducer::rebuild_buckets() {
  // Ensure reduction for previous backwards pass is finished. If user's model
  // has unused parameters for example, this will raise an error recommending to
  // run with find_unused_parameters=True, instead of the size mismatch
  // exception below.
  ensure_prior_reduction_finished();
  std::lock_guard<std::mutex> lock(mutex_);
  if (!should_rebuild_buckets() || rebuilt_params_.empty()) {
    return false;
  }

  TORCH_INTERNAL_ASSERT(
      rebuilt_params_.size() == rebuilt_param_indices_.size(),
      c10::str(
          "rebuilt parameter tensors size is not same as rebuilt parameter indices size: ",
          rebuilt_params_.size(),
          " versus ",
          rebuilt_param_indices_.size()));
  TORCH_INTERNAL_ASSERT(
      replicas_[0].size() == rebuilt_param_indices_.size(),
      c10::str(
          "rebuilt parameter indices size is not same as original model parameters size.",
          replicas_[0].size(),
          " versus ",
          rebuilt_param_indices_.size()));
  std::vector<std::vector<size_t>> rebuilt_bucket_indices;
  std::vector<size_t> bucket_size_limits;
  bucket_size_limits.push_back(kDefaultFirstBucketBytes);
  bucket_size_limits.push_back(bucket_bytes_cap_);
  rebuilt_bucket_indices = compute_bucket_assignment_by_size(
      rebuilt_params_,
      bucket_size_limits,
      expect_sparse_gradients_[0],
      rebuilt_param_indices_);

  // For rebuilt bucket indices, it needs to be synced across all ranks.
  // Broadcast the newly rebuilt bucket indices from rank 0 in default.
  // After syncing up rebuilt bucket indices, initialize buckets for reducer.
  sync_bucket_indices(rebuilt_bucket_indices);

  has_rebuilt_bucket_ = true;
  rebuilt_params_.clear();
  rebuilt_param_indices_.clear();

  initialize_buckets(std::move(rebuilt_bucket_indices));
  return true;
}

// See Note [DDP Communication Hook]
void Reducer::register_comm_hook(std::unique_ptr<CommHookInterface> iface) {
  TORCH_CHECK(
      comm_hook_ == nullptr, "register_comm_hook can only be called once.");
  // TODO(@sinannasir): Single-process multiple-device mode support for DDP
  // communication hook. Related to GH Issue #42542.
  TORCH_CHECK(
      replicas_.size() == 1,
      "Communication hook does not support single-process multiple-device mode.");

  comm_hook_ = std::move(iface);
}

void Reducer::ensure_prior_reduction_finished() {
  // Check that any prior reduction has finished.
  // The variable `require_finalize_` is true until all gradients
  // have been computed and reduction of all buckets has been kicked off.
  if (require_finalize_) {
    TORCH_CHECK(
        false,
        "Expected to have finished reduction in the prior iteration before ",
        "starting a new one. ",
        "",
        "This error indicates that your module has parameters that were ",
        "not used in producing loss. ",
        "",
        "You can enable unused parameter detection by (1) passing the keyword "
        "argument `find_unused_parameters=True` to ",
        "`torch.nn.parallel.DistributedDataParallel`; (2) making sure all ",
        "`forward` function outputs participate in calculating loss. "
        "",
        "If you already have done the above two steps, then the distributed ",
        "data parallel module wasn't able to locate the output tensors in the ",
        "return value of your module's `forward` function. ",
        "Please include the loss function and the structure of the return ",
        "value of `forward` of your module when reporting this issue (e.g. ",
        "list, dict, iterable).");
  }

}

namespace {

// Tensors may be coalesced into buckets. Buckets must contain tensors of
// the same type, on the same device, so a bucket can identified by a
// composite key of a tensor's type identifier and its device.
struct BucketKey {
  BucketKey(c10::ScalarType type, c10::Device device)
      : type(std::move(type)), device(std::move(device)) {}

  const c10::ScalarType type;
  const c10::Device device;

  // See torch/csrc/utils/hash.h for dispatch code.
  static size_t hash(const BucketKey& key) {
    return c10::get_hash(key.type, key.device);
  }
};

inline bool operator==(const BucketKey& lhs, const BucketKey& rhs) {
  return lhs.type == rhs.type && lhs.device == rhs.device;
}

} // namespace

std::vector<std::vector<size_t>> compute_bucket_assignment_by_size(
    const std::vector<at::Tensor>& tensors,
    const std::vector<size_t>& bucket_size_limits,
    const std::vector<bool>& expect_sparse_gradient,
    const std::vector<int64_t>& tensor_indices) {
  // Either expect_sparse_gradient is not specified or it has as many elements
  // as the vector with tensors.
  TORCH_INTERNAL_ASSERT(
      expect_sparse_gradient.empty() ||
      (tensors.size() == expect_sparse_gradient.size()));
  TORCH_INTERNAL_ASSERT(tensors.size() > 0);

  std::vector<std::vector<size_t>> result;
  result.reserve(tensors.size());

  // Keep iterator into the size_limit vector by tensor type and device.
  // This is done so that we can use the consecutive bucket limits per type.
  std::unordered_map<
      BucketKey,
      std::vector<size_t>::const_iterator,
      c10::hash<BucketKey>>
      bucket_size_limit_iterators;

  // Local accumulator type for a single bucket.
  struct BucketAccumulator {
    std::vector<size_t> indices;
    size_t size = 0;
  };

  // Keep vector of indices and size accumulator by tensor type and device.
  std::unordered_map<BucketKey, BucketAccumulator, c10::hash<BucketKey>>
      buckets;

  for (size_t i = 0; i < tensors.size(); i++) {
    const auto& tensor = tensors[i];
    TORCH_CHECK(!tensor.is_sparse(), "No support for sparse tensors.");

    // when tensor_indices is empty, the index of tensors[i] assigned to
    // bucket is i, otherwise the tensor index is tensor_indices[i].
    auto tensor_index = i;
    if (!tensor_indices.empty()) {
      tensor_index = tensor_indices[i];
    }
    // If we expect a sparse gradient to be produced for this tensor, it cannot
    // be grouped together with other gradients and gets its own bucket.
    if (!expect_sparse_gradient.empty() &&
        expect_sparse_gradient[tensor_index]) {
      result.push_back({tensor_index});
      continue;
    }

    auto key = BucketKey(tensor.scalar_type(), tensor.device());
    auto& bucket = buckets[key];
    bucket.indices.push_back(tensor_index);
    bucket.size += tensor.numel() * tensor.element_size();

    // Initialize bucket size limit iterator if necessary.
    if (bucket_size_limit_iterators.count(key) == 0) {
      bucket_size_limit_iterators[key] = bucket_size_limits.begin();
    }

    auto& bucket_size_limit_iterator = bucket_size_limit_iterators[key];
    const auto bucket_size_limit = *bucket_size_limit_iterator;
    if (bucket.size >= bucket_size_limit) {
      result.emplace_back(std::move(bucket.indices));
      bucket = BucketAccumulator();

      // Advance to the next bucket size limit for this type/device.
      auto next = bucket_size_limit_iterator + 1;
      if (next != bucket_size_limits.end()) {
        bucket_size_limit_iterator = next;
      }
    }
  }

  // Add remaining buckets.
  for (auto& it : buckets) {
    auto& bucket = it.second;
    if (!bucket.indices.empty()) {
      result.emplace_back(std::move(bucket.indices));
    }
  }

  // If tensor_indices is not empty, the order of the tensors is in the gradient
  // ready order, so no need to sort.
  // If tensor_indices is empty, sort resulting buckets by the minimum tensor
  // index they include. We assume that the order of the tensors is the order in
  // which they are used (or the reverse order in which their gradients are
  // produced). This sorting step ensures that the buckets are ready in
  // consecutive order.
  if (tensor_indices.empty()) {
    std::sort(
        result.begin(),
        result.end(),
        [](const std::vector<size_t>& a, const std::vector<size_t>& b) {
          const auto amin = std::min_element(a.begin(), a.end());
          const auto bmin = std::min_element(b.begin(), b.end());
          return *amin < *bmin;
        });
  }

  return result;
}

} // namespace c10d