1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
|
#include <torch/csrc/distributed/rpc/process_group_agent.h>
#include <c10/util/C++17.h>
#include <c10d/ProcessGroup.hpp>
#include <fmt/format.h>
#include <torch/csrc/distributed/rpc/utils.h>
namespace torch {
namespace distributed {
namespace rpc {
////////////////////////// MessageCounter /////////////////////////////////
ProcessGroupAgent::MessageCounter::MessageCounter(int worldSize)
: counters_(worldSize) {}
void ProcessGroupAgent::MessageCounter::increment(int dst) {
std::lock_guard<std::mutex> guard(mutex_);
++counters_[dst];
}
std::vector<int64_t> ProcessGroupAgent::MessageCounter::snapshot() {
std::lock_guard<std::mutex> guard(mutex_);
return counters_;
}
////////////////////////// MetricsTracker /////////////////////////////////
ProcessGroupAgent::AverageMetricsTracker::AverageMetricsTracker(
std::string key,
uint64_t currentSum,
uint64_t currentCount)
: key_(std::move(key)),
currentSum_(currentSum),
currentCount_(currentCount) {}
void ProcessGroupAgent::AverageMetricsTracker::addData(uint64_t dataPoint) {
currentSum_ += dataPoint;
++currentCount_;
}
double ProcessGroupAgent::AverageMetricsTracker::computeAverage() {
return currentCount_ == 0 ? 0 : currentSum_ / (double)currentCount_;
}
//////////////////////// ProcessGroupAgent /////////////////////////////////
using steady_clock_time_point =
std::chrono::time_point<std::chrono::steady_clock>;
const steady_clock_time_point kInfiniteTimeoutTimePoint =
std::chrono::time_point<std::chrono::steady_clock>::max();
const std::string kNumPendingRequests = "agent.num_pending_requests";
const std::string kThreadPoolSize = "agent.thread_pool_size";
const std::string kNumIdleThreads = "agent.num_idle_threads";
const std::string kGilAverageWaitTime = "agent.gil_average_wait_time_us";
const std::string kClientActiveCalls = "agent.client_active_calls";
const std::string kServerActiveCalls = "agent.server_active_calls";
const std::string kServerActiveAsyncCalls = "agent.server_active_async_calls";
void ProcessGroupAgent::collectNames() {
const std::string& workerName = workerInfo_.name_;
const auto worldSize = pg_->getSize();
// use c10d allgather to collect names
torch::Tensor nameTensor =
torch::zeros({WorkerInfo::MAX_NAME_LEN}, torch::kChar);
memcpy(nameTensor.storage().data(), workerName.c_str(), workerName.length());
std::vector<torch::Tensor> inputName = {nameTensor};
std::vector<std::vector<torch::Tensor>> outputNames(1);
for (int i = 0; i < worldSize; ++i) {
outputNames[0].emplace_back(
torch::empty({WorkerInfo::MAX_NAME_LEN}, {torch::kChar}));
}
pg_->allgather(outputNames, inputName)->wait();
// convert collected name tensors into string names
for (worker_id_t i = 0; i < worldSize; ++i) {
torch::Tensor& tensor = outputNames[0][i];
std::string peerName((const char*)tensor.storage().data<signed char>());
TORCH_CHECK(
nameMap_.find(peerName) == nameMap_.end(),
"RpcAgent name ",
peerName,
" is not unique.");
nameMap_[std::move(peerName)] = i;
}
}
ProcessGroupAgent::ProcessGroupAgent(
std::string workerName,
std::shared_ptr<c10d::ProcessGroup> pg,
int numSendRecvThreads,
std::chrono::milliseconds rpcTimeout,
std::unique_ptr<RequestCallback> cb)
: RpcAgent(
WorkerInfo(std::move(workerName), (int64_t)pg->getRank()),
std::move(cb),
rpcTimeout),
pg_(std::move(pg)),
sendCounts_(pg_->getSize()),
recvCounts_(pg_->getSize()),
nextId_(0),
sendMutexes_(pg_->getSize()),
threadPool_(numSendRecvThreads),
timeoutThreadEnabled_{false} {
// initialize metric info counters
metrics_.resize(ProcessGroupAgentMetrics::N_METRICS);
metrics_[ProcessGroupAgentMetrics::GIL_WAIT_TIME] =
std::make_unique<AverageMetricsTracker>(kGilAverageWaitTime);
collectNames();
auto workerRankIter = nameMap_.find(workerInfo_.name_);
TORCH_CHECK(
workerRankIter != nameMap_.end(),
"Failed to resolve worker "
"name ",
workerInfo_.name_,
" to a ProcessGroup rank.");
TORCH_CHECK(
pg_->getRank() == workerRankIter->second,
"Resolved worker rank ",
workerRankIter->second,
" does not match ProcessGroup rank ",
pg_->getRank());
// tmp vector to sort names in rank's order
const auto worldSize = pg_->getSize();
std::vector<std::string> tmpWorkerIds(worldSize);
for (auto& entry : nameMap_) {
tmpWorkerIds[entry.second] = entry.first;
}
allWorkerInfo_.reserve(worldSize);
for (worker_id_t rank = 0; rank < worldSize; ++rank) {
allWorkerInfo_.emplace_back(std::move(tmpWorkerIds[rank]), rank);
}
}
ProcessGroupAgent::~ProcessGroupAgent() {
if (rpcAgentRunning_) {
shutdown();
}
}
const WorkerInfo& ProcessGroupAgent::getWorkerInfo(
const std::string& workerName) const {
const auto idIter = nameMap_.find(workerName);
TORCH_CHECK(
idIter != nameMap_.end(), "Unknown destination worker ", workerName);
return allWorkerInfo_[idIter->second];
}
const WorkerInfo& ProcessGroupAgent::getWorkerInfo(worker_id_t id) const {
return allWorkerInfo_[id];
}
std::vector<WorkerInfo> ProcessGroupAgent::getWorkerInfos() const {
return allWorkerInfo_;
}
void ProcessGroupAgent::join() {
sync();
std::unique_lock<std::mutex> lock(futureMutex_);
futureCV_.wait(
lock, [this] { return futures_.empty() && futureTimeouts_.empty(); });
lock.unlock();
pg_->barrier()->wait();
}
bool ProcessGroupAgent::hasPendingMessage() {
const auto worldSize = pg_->getSize();
auto snapshot = std::make_unique<std::vector<int64_t>>();
snapshot->reserve(2 * worldSize);
auto recvSnapshot = recvCounts_.snapshot();
auto sendSnapshot = sendCounts_.snapshot();
snapshot->insert(
snapshot->end(),
std::make_move_iterator(recvSnapshot.begin()),
std::make_move_iterator(recvSnapshot.end()));
snapshot->insert(
snapshot->end(),
std::make_move_iterator(sendSnapshot.begin()),
std::make_move_iterator(sendSnapshot.end()));
auto snapshotData = snapshot->data();
auto deleteWhenDone = snapshot.release();
std::vector<torch::Tensor> inputSnapshot = {torch::from_blob(
snapshotData,
{2, worldSize},
[deleteWhenDone](void*) { delete deleteWhenDone; },
{torch::kInt64})};
// allgather both send and recv messages in one shot
std::vector<std::vector<torch::Tensor>> outputSnapshots(1);
for (int i = 0; i < worldSize; ++i) {
outputSnapshots[0].emplace_back(
torch::zeros({2, worldSize}, {torch::kInt64}));
}
pg_->allgather(outputSnapshots, inputSnapshot)->wait();
// loop through all send/recv pairs to make sure that all sent messages are
// processed.
const auto& peerCounts = outputSnapshots[0];
for (int from = 0; from < worldSize; ++from) {
for (int to = 0; to < worldSize; ++to) {
// peerCounts[x][0] is recv counts, and peerCounts[x][1] is send counts
const auto& sentCnt = peerCounts[from][1][to].data_ptr<int64_t>()[0];
const auto& recvCnt = peerCounts[to][0][from].data_ptr<int64_t>()[0];
// NB: we cannot throw an error when sentCnt < recvCnt here. Because, send
// and recv counts on different workers are read in a distributed manner.
// It is possible that the sender reads its send count before sending, but
// the receive reads its recv count after receiving. Hence, both > and <
// are valid states.
if (sentCnt != recvCnt) {
return true;
}
}
}
return false;
}
void ProcessGroupAgent::sync() {
// Block until all processes wants to sync.
pg_->barrier()->wait();
// block until all peers agree that all sent messages have been processed.
do {
// Finish all send/recv tasks in the thread pool
threadPool_.waitWorkComplete();
// As there could be nested RPC calls, or response callback could also
// trigger more messages to be sent, we need to wait for the thread pool
// again.
} while (hasPendingMessage());
}
void ProcessGroupAgent::startImpl() {
timeoutThreadEnabled_.store(true);
listenerThread_ = std::thread(&ProcessGroupAgent::listenLoop, this);
futureTimeoutThread_ =
std::thread(&ProcessGroupAgent::pollTimedOutRPCs, this);
}
void ProcessGroupAgent::shutdownImpl() {
LOG(INFO) << "Shutting down ProcessGroupAgent on rank " << pg_->getRank()
<< ".";
{
std::unique_lock<std::mutex> lock(futureMutex_);
timeoutThreadEnabled_.store(false);
}
futureTimeoutCV_.notify_one();
futureTimeoutThread_.join();
// Abort listener thread to stop accepting new work. We need to interrupt the
// recvWork->wait() call the listener loop may be blocked in before joining
// the thread.
{
std::unique_lock<std::mutex> lock(recvWorkMutex_);
if (recvWork_) {
recvWork_->abort();
}
}
listenerThread_.join();
// Abort any pending sends to any destination rank that have not been
// completed.
{
std::lock_guard<std::mutex> lock(pendingSendMutex_);
for (auto& it : currentPendingSends_) {
const auto& pendingSends = it.second;
const auto dst = it.first;
for (const auto& send : pendingSends) {
if (!send->isCompleted()) {
LOG(INFO) << "Worker " << RpcAgent::getWorkerInfo().id_
<< " aborting pending send to destination rank " << dst;
send->abort();
}
}
}
}
// Note: calling threadPool_.waitWorkComplete() after listenerThread.join() so
// that we can finish any possible work enqueued into the thread pool, before
// python RPC handler is shutdown (see shutdown in rpc/api.py).
threadPool_.waitWorkComplete();
}
std::shared_ptr<FutureMessage> ProcessGroupAgent::send(
const WorkerInfo& to,
Message&& message,
const float rpcTimeoutSeconds) {
// Throw if we previously encountered an exception in ::listenLoop.
{
std::unique_lock<std::mutex> guard(listenLoopExceptionMutex_);
if (listenLoopException_) {
std::rethrow_exception(listenLoopException_);
}
}
if (!rpcAgentRunning_.load()) {
// We are trying to send but RPC has been shut down on this node. This can
// happen if we are in a shutdown sequence but background threads are still
// processing messages that result in send()s. Throw a descriptive error.
auto err = c10::str(
"Node ",
RpcAgent::getWorkerInfo().id_,
"tried to send() a message of type ",
message.type(),
" but RPC is no longer running on this node.");
throw std::runtime_error(err);
}
TORCH_CHECK(
to.id_ < (worker_id_t)pg_->getSize(),
"Destination rank is out of bound, got ",
to.id_,
", but world size is ",
pg_->getRank());
auto requestId = nextId();
auto future = std::make_shared<FutureMessage>();
if (message.isRequest()) {
// millisecond level precision of when request started.
auto futureStartTime = std::chrono::steady_clock::now();
// if passed in timeout is unset, then use the currently set default timeout
// for all RPCs.
auto timeout = rpcTimeoutSeconds == kUnsetRpcTimeout
? getRpcTimeout()
: std::chrono::milliseconds(
static_cast<int>(rpcTimeoutSeconds * kSecToMsConversion));
// Prepare endTime from timeout. Set infinite timeout if
// specified.
steady_clock_time_point endTime = timeout.count() == 0
? kInfiniteTimeoutTimePoint
: futureStartTime + timeout;
bool notifyThread = false;
{
std::lock_guard<std::mutex> lock{futureMutex_};
// Insert future into future map.
futures_.emplace(
std::piecewise_construct,
std::forward_as_tuple(requestId),
std::forward_as_tuple(FutureInfo(future, endTime, to.id_, timeout)));
// insert future into timeouts map to keep track of its timeout
auto& requestIds = futureTimeouts_[endTime];
requestIds.insert(requestId);
// Signal the watchdog to monitor future timeouts if this is the first
// future created or it has earlier end time than other futures in the
// map.
if (futureTimeouts_.begin()->first == endTime &&
(requestIds.size() == 1)) {
notifyThread = true;
}
}
if (notifyThread) {
// Notify the watchdog thread only after releasing the lock,
// so watchdog can acquire lock on waking up.
futureTimeoutCV_.notify_one();
}
message.setId(requestId);
++clientActiveCalls_;
} else {
future->markCompleted(Message());
}
// Sending to ourselves: bypass the send logic and enqueue directly
// to our receiving queue.
if (to.id_ == (worker_id_t)pg_->getRank()) {
sendToSelf(std::move(message));
return future;
}
// NB: cannot directly pass ``to`` to the ``SendWork``, because it might no
// longer be alive when the ``SendWork`` is executed. For example, the
// application could query the ``WorkerInfo`` using name through the
// ``RpcAgent::getWorkerInfo`` API, and pass the ``WorkerInfo`` back here, so
// we have C++ -> Python -> C++. For an asynchronous RPC, the ``WorkerInfo``
// reference on Python side could die before ``SendWork`` uses it, and Pybind
// will not keep the Python reference alive even if it originally comes from
// the C++ land. Hence, we have to explicitly use the ``WorkerInfo`` in the
// C++ land.
enqueueSend(SendWork(allWorkerInfo_[to.id_], std::move(message)));
return future;
}
void ProcessGroupAgent::handleSend(const SendWork& work) {
auto serializedPayload = std::make_unique<std::string>(std::move(
wireSerialize(work.message_.payload(), work.message_.tensors())));
std::vector<torch::Tensor> preamble = {torch::tensor(
{(int64_t)pg_->getRank(),
(int64_t)serializedPayload->length(),
(int64_t)work.message_.type(),
(int64_t)work.message_.id()},
{torch::kInt64})};
// ProcessGroup is not thread-safe when sending with the same tag,
// hence the lock
std::vector<std::shared_ptr<c10d::ProcessGroup::Work>> pendingSends;
const auto dst = work.to_.id_;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
auto serializedPayloadData = const_cast<char*>(serializedPayload->data());
auto serializedPayloadSize = serializedPayload->size();
std::string* deleteWhenDone = serializedPayload.release();
std::vector<torch::Tensor> payload = {torch::from_blob(
reinterpret_cast<void*>(serializedPayloadData),
serializedPayloadSize,
[deleteWhenDone](void*) { delete deleteWhenDone; },
{torch::kChar})};
pendingSends.reserve(2);
sendCounts_.increment(dst);
{
std::lock_guard<std::mutex> guard(sendMutexes_[dst]);
pendingSends.emplace_back(pg_->send(preamble, dst, dst /* channelTag */));
pendingSends.emplace_back(pg_->send(payload, dst, dst /* channelTag */));
}
// Write pendingSends to a global map so that they can be interrupted by
// ::shutdown().
{
std::lock_guard<std::mutex> pendingSendGuard(pendingSendMutex_);
for (auto& p : pendingSends) {
currentPendingSends_[dst].insert(p);
}
}
for (auto& pendingSend : pendingSends) {
if (!rpcAgentRunning_.load() || !pendingSend->wait()) {
// Send was interrupted or RPC is not running.
return;
}
}
// Erase the pending sends that we added since we have returned from wait.
{
std::lock_guard<std::mutex> pendingSendGuard(pendingSendMutex_);
// NB: We cannot just erase all of currentPendingSends[dst], since this
// might preemptively remove sends from other threads.
auto& set = currentPendingSends_[dst];
for (auto& p : pendingSends) {
set.erase(p);
}
}
}
void ProcessGroupAgent::sendToSelf(Message&& message) {
threadPool_.run(std::bind(
[this](const Message& message) {
// Unlike the other cases, need to add a tensor deleter, since the
// data outlives the scope of this function. It's shared_ptr<> due
// to c++11 lambda capture limitations with unique_ptr<>.
std::unique_ptr<std::string> payload;
try {
payload = std::make_unique<std::string>(
wireSerialize(message.payload(), message.tensors()));
// only increment sendCounts when the message is indeed added into
// local recv.
sendCounts_.increment(pg_->getRank());
} catch (std::exception& e) {
markFutureWithError(message.id(), e.what());
return;
}
const char* data = payload->data();
size_t len = payload->length();
std::string* delete_when_done = payload.release();
enqueueRecv(RecvWork(
getWorkerInfo(pg_->getRank()),
message.type(),
message.id(),
torch::from_blob(
(void*)data,
len,
[delete_when_done](void*) { delete delete_when_done; },
{torch::kChar})));
},
std::move(message)));
}
void ProcessGroupAgent::enqueueSend(SendWork work) {
// NB: this can be changed to use a native move capture when moved to C++14
threadPool_.run(std::bind(
[this](const SendWork& work) {
try {
handleSend(work);
} catch (std::exception& e) {
auto errorStr = c10::str(
"Encountered exception in ProcessGroupAgent::enqueueSend: ",
e.what(),
" on node: ",
RpcAgent::getWorkerInfo().id_);
auto exceptionMsg =
rpc::createExceptionResponse(errorStr, work.message_.id());
if (work.message_.isRequest()) {
// Mark the future with corresponding to this request with an error.
markFutureWithError(exceptionMsg);
} else if (work.message_.isResponse()) {
// Try sending the error along.
handleSend(SendWork(work.to_, std::move(exceptionMsg)));
}
}
},
std::move(work)));
}
bool ProcessGroupAgent::handleRecv(RecvWork& work) {
torch::Tensor& payload = work.payload_;
auto data = wireDeserialize(payload.storage().data(), payload.numel());
Message message(
std::move(data.first), std::move(data.second), work.type_, work.id_);
if (message.isRequest()) {
++serverActiveCalls_;
std::shared_ptr<FutureMessage> futureResponse;
try {
futureResponse = cb_->operator()(message);
} catch (const std::exception& e) {
futureResponse = std::make_shared<FutureMessage>();
futureResponse->setError(e.what());
}
if (futureResponse->completed()) {
--serverActiveCalls_;
if (!futureResponse->hasError()) {
send(work.from_, std::move(*futureResponse).moveValue());
} else {
send(
work.from_,
createExceptionResponse(
futureResponse->error()->what(), message.id()));
}
} else {
++serverActiveAsyncCalls_;
// Callback processing returned an incomplete future. Add sending the
// response as a callback which fires when the future completes.
// Use a weak_ptr, so we can std::move the future's value.
auto fromId = work.from_.id_;
auto requestId = work.id_;
futureResponse->addCallback([this,
fromId,
requestId,
weak = std::weak_ptr<FutureMessage>(
futureResponse)]() {
auto futureResponse = weak.lock();
TORCH_INTERNAL_ASSERT(futureResponse);
--serverActiveCalls_;
--serverActiveAsyncCalls_;
if (!futureResponse->hasError()) {
send(getWorkerInfo(fromId), std::move(*futureResponse).moveValue());
} else {
send(
getWorkerInfo(fromId),
createExceptionResponse(
futureResponse->error()->what(), requestId));
}
});
}
} else if (message.isResponse()) {
auto id = message.id();
std::shared_ptr<FutureMessage> fm = nullptr;
{
std::lock_guard<std::mutex> lock{futureMutex_};
const auto& futureInfo = futures_.find(id);
if (futureInfo == futures_.end()) {
// Received a completion for an already-processed future (such as one
// that timed out), drop the recv. By returning false, recvCounts will
// not be incremented, it will be incremented by the thread that
// determined that the future timed out.
return false;
}
// Use futureInfo before destructing it.
fm = futureInfo->second.future_;
auto endTime = futureInfo->second.endTime_;
futures_.erase(id);
// look up the corresponding future by its time out and request
// ID, and remove it from the timeouts map
auto& futuresAtTime = futureTimeouts_[endTime];
auto it = futuresAtTime.find(id);
TORCH_INTERNAL_ASSERT(
it != futuresAtTime.end(),
"Error: could not find future in futureTimeouts map, race condition.");
futuresAtTime.erase(it);
if (futuresAtTime.empty()) {
// remove the key from futureTimeouts_
futureTimeouts_.erase(endTime);
}
}
futureCV_.notify_all();
--clientActiveCalls_;
if (message.type() == MessageType::EXCEPTION) {
fm->setError(
std::string(message.payload().begin(), message.payload().end()));
} else {
fm->markCompleted(std::move(message));
}
} else {
// TODO: pass the error back to the caller instead of crashing here.
TORCH_INTERNAL_ASSERT(false, "unrecognized message type ", message.type());
}
return true;
}
void ProcessGroupAgent::enqueueRecv(RecvWork work) {
threadPool_.run(std::bind(
[&](RecvWork& work) {
try {
// Only increment recvCounts if handleRecv() tells us to. We may not,
// i.e. if we process work corresponding to a future that has already
// been processed.
if (handleRecv(work)) {
recvCounts_.increment(work.from_.id_);
}
} catch (const std::exception& e) {
// Processing for this request/response failed. Log the details of the
// request.
auto fromId = work.from_.id_;
auto err = c10::str(
"Internal error while processing request of type ",
work.type_,
" on node ",
RpcAgent::getWorkerInfo().id_,
", from node ",
fromId,
" : ",
e.what());
LOG(INFO) << err;
// Still increment so that this recv is recognized as non-oustanding
// during graceful shutdown.
recvCounts_.increment(work.from_.id_);
}
},
std::move(work)));
}
void ProcessGroupAgent::markFutureWithError(Message& message) {
TORCH_INTERNAL_ASSERT(
message.type() == MessageType::EXCEPTION,
"markFutureWithError should be only called with Message that has type Exception.");
markFutureWithError(
message.id(),
std::string(message.payload().begin(), message.payload().end()));
}
void ProcessGroupAgent::markFutureWithError(int64_t id, std::string errorMsg) {
std::shared_ptr<FutureMessage> fm = nullptr;
{
std::lock_guard<std::mutex> lock{futureMutex_};
const auto& futureInfo = futures_.find(id);
if (futureInfo == futures_.end()) {
// Did not find future in map - this can occur when the future has timed
// out and been processed accordingly.
return;
}
fm = futureInfo->second.future_;
auto rpcEndTime = futureInfo->second.endTime_;
futures_.erase(id);
// look up the corresponding future by its time out and request ID,
// and remove it from the timeouts map
auto& futuresAtTime = futureTimeouts_[rpcEndTime];
auto it = futuresAtTime.find(id);
TORCH_INTERNAL_ASSERT(
it != futuresAtTime.end(),
"Error: could not find future in futureTimeouts map, race condition.");
futuresAtTime.erase(it);
if (futuresAtTime.empty()) {
// remove the key from futureTimeouts_
futureTimeouts_.erase(rpcEndTime);
}
}
--clientActiveCalls_;
fm->setError(std::move(errorMsg));
futureCV_.notify_all();
}
void ProcessGroupAgent::listenLoop() {
try {
listenLoopInternal();
} catch (const std::exception& e) {
// Error occured in listenLoop(). Stop receiving thread and store
// exception to indicate that the RPC agent is in an unhealthy state and
// we should shutdown.
auto err = c10::str(
"Encountered exception in ProcessGroupAgent::listenLoop(): ",
e.what(),
" on worker ",
RpcAgent::getWorkerInfo().id_,
". This means that the RPC agent is in an unhealthy state and unusable.");
LOG(ERROR) << err;
{
// Lock write to listenLoopException_ since ::send() reads from it.
std::lock_guard<std::mutex> guard(listenLoopExceptionMutex_);
listenLoopException_ = std::current_exception();
}
} catch (...) {
std::string unknownErrorMsg =
"Unknown exception occured in "
"ProcessGroupAgent::listenLoop. RPC Agent is in an unhealthy state and "
"unusable.";
LOG(ERROR) << unknownErrorMsg;
{
// Lock write to listenLoopException_ since ::send() reads from it.
std::lock_guard<std::mutex> guard(listenLoopExceptionMutex_);
listenLoopException_ =
std::make_exception_ptr(std::runtime_error(unknownErrorMsg));
}
}
}
void ProcessGroupAgent::listenLoopInternal() {
while (rpcAgentRunning_.load()) {
// rank, tensor size, message type
std::vector<torch::Tensor> preamble = {torch::empty({4}, {torch::kInt64})};
auto work = pg_->recvAnysource(preamble, pg_->getRank());
{
// Write class variable so it can be aborted by shutdown()
std::lock_guard<std::mutex> guard(recvWorkMutex_);
recvWork_ = work;
}
if (!rpcAgentRunning_.load() || !work->wait() /* aborted */) {
return;
}
int64_t* preamble_items = preamble.front().storage().data<int64_t>();
auto srcRank = preamble_items[0];
auto size = preamble_items[1];
MessageType type = MessageType(preamble_items[2]);
int64_t id = preamble_items[3];
std::vector<torch::Tensor> tensors = {torch::empty({size}, {torch::kChar})};
work = pg_->recv(tensors, srcRank, pg_->getRank());
{
// Write class variable so it can be aborted by shutdown()
std::lock_guard<std::mutex> guard(recvWorkMutex_);
recvWork_ = work;
}
if (!rpcAgentRunning_.load() || !work->wait() /* aborted */) {
return;
}
enqueueRecv(
RecvWork(allWorkerInfo_[srcRank], type, id, std::move(tensors[0])));
}
}
void ProcessGroupAgent::pollTimedOutRPCs() {
while (timeoutThreadEnabled_.load()) {
std::unique_lock<std::mutex> lock{futureMutex_};
steady_clock_time_point minEndTime;
// Estimate amount of time the first future will time out in, and sleep
// for that long.
// if there are no futures or the first future's RPC timeout is set to 0
// (meaning no timeout), then sleep for a set "infinity" time.
if (futureTimeouts_.empty()) {
minEndTime = kInfiniteTimeoutTimePoint;
} else {
minEndTime = futureTimeouts_.begin()->first;
}
auto shouldUpdateMinEndTimePredicate = [&, this]() -> bool {
// Notice, whoever modifies `timeoutThreadEnabled_`
// must acquire a lock on `futureMutex_`.
// Otherwise, this predicate could deadlock.
// If during evaluating the predicate, `::shutdown()` is called, then
// the predicate missed the notification before it started waiting
// on the cond var.
if (!timeoutThreadEnabled_.load()) {
return true;
}
steady_clock_time_point minEndTimeInMap = kInfiniteTimeoutTimePoint;
if (futureTimeouts_.empty()) {
minEndTimeInMap = kInfiniteTimeoutTimePoint;
} else {
minEndTimeInMap = futureTimeouts_.begin()->first;
}
return minEndTimeInMap < minEndTime;
};
bool shouldUpdateMinEndTime = true;
if (minEndTime == kInfiniteTimeoutTimePoint) {
futureTimeoutCV_.wait(lock, shouldUpdateMinEndTimePredicate);
} else {
shouldUpdateMinEndTime = futureTimeoutCV_.wait_until(
lock, minEndTime, shouldUpdateMinEndTimePredicate);
}
if (shouldUpdateMinEndTime) {
continue;
}
const auto timedOutFutures = processTimedOutFutures();
lock.unlock();
futureCV_.notify_all();
for (const auto& timedOutFuture : timedOutFutures) {
auto errStr =
fmt::format(kRpcTimeoutErrorStr, timedOutFuture.timeout_.count());
auto err = makeRPCError(errStr, RPCErrorType::TIMEOUT);
if (!timedOutFuture.future_->hasError()) {
--clientActiveCalls_;
timedOutFuture.future_->setError(std::move(err));
// The future timed out and will not be processed by handleRecv(), even
// if we eventually get a response. In order to keep track of all
// send/recv pairs, we increment the count here.
const int dst = timedOutFuture.dstRank_;
recvCounts_.increment(dst);
}
}
}
}
const std::vector<ProcessGroupAgent::FutureInfo> ProcessGroupAgent::
processTimedOutFutures() {
std::vector<FutureInfo> timedOutFutures;
for (auto it = futureTimeouts_.begin(); it != futureTimeouts_.end();
/* intentional no increment */) {
const auto& endTime = it->first;
if (std::chrono::steady_clock::now() < endTime) {
// Since the futureTimeouts_ map is ordered by timeout, we don't need
// to check the remaining futures.
break;
} else {
const auto& futureIDs = it->second;
for (const auto& futureID : futureIDs) {
auto futureIt = futures_.find(futureID);
TORCH_INTERNAL_ASSERT(
futureIt != futures_.end(),
"Race Condition - Expected future does not exist in map");
const auto futInfo = futureIt->second;
timedOutFutures.push_back(futInfo);
futures_.erase(futureID);
}
it = futureTimeouts_.erase(it);
}
}
return timedOutFutures;
}
std::unordered_map<std::string, std::string> ProcessGroupAgent::getMetrics() {
std::unordered_map<std::string, std::string> metrics;
{
std::unique_lock<std::mutex> lock(futureMutex_);
auto futuresSize = futures_.size();
lock.unlock();
metrics[kNumPendingRequests] = c10::to_string(futuresSize);
}
metrics[kThreadPoolSize] = c10::to_string(threadPool_.size());
metrics[kNumIdleThreads] = c10::to_string(threadPool_.numAvailable());
metrics[kClientActiveCalls] = c10::to_string(clientActiveCalls_.load());
metrics[kServerActiveCalls] = c10::to_string(serverActiveCalls_.load());
metrics[kServerActiveAsyncCalls] =
c10::to_string(serverActiveAsyncCalls_.load());
if (isGILProfilingEnabled()) {
// Add time-series based metrics, just GIL wait times for now.
{
std::unique_lock<std::mutex> lock(metricsMutex_);
auto avgGilWaitTime = metrics_[GIL_WAIT_TIME]->computeAverage();
lock.unlock();
metrics[kGilAverageWaitTime] = c10::to_string(avgGilWaitTime);
}
}
return metrics;
}
void ProcessGroupAgent::addGilWaitTime(
const std::chrono::microseconds gilWaitTime) {
std::lock_guard<std::mutex> lock(metricsMutex_);
metrics_[ProcessGroupAgentMetrics::GIL_WAIT_TIME]->addData(
gilWaitTime.count());
}
} // namespace rpc
} // namespace distributed
} // namespace torch
|