File: tensorpipe_agent.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (1062 lines) | stat: -rw-r--r-- 40,596 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
#include <torch/csrc/distributed/rpc/tensorpipe_agent.h>

#ifdef USE_TENSORPIPE

#include <limits>

#include <fmt/format.h>
#include <tensorpipe/tensorpipe.h>

#include <torch/csrc/distributed/rpc/tensorpipe_utils.h>
#include <torch/csrc/distributed/rpc/utils.h>

namespace torch {
namespace distributed {
namespace rpc {

namespace {

// An environment variable along the lines of GLOO_ and NCCL_SOCKET_IFNAME that
// allows the user to specify a device to bind to, instead of binding to the
// address that the hostname resolves to.
const std::string kSocketIfnameEnvVar = "TP_SOCKET_IFNAME";
const std::string kDefaultUvAddress = "127.0.0.1";

const std::string kGilAverageWaitTime = "agent.gil_average_wait_time_us";
const std::string kThreadPoolSize = "agent.thread_pool_size";
const std::string kNumIdleThreads = "agent.num_idle_threads";
const std::string kClientActiveCalls = "agent.client_active_calls";
const std::string kServerActiveCalls = "agent.server_active_calls";
const std::string kServerActiveAsyncCalls = "agent.server_active_async_calls";

inline void checkCPUTensor(const torch::Tensor& tensor) {
  TORCH_CHECK(
      tensor.device() == at::kCPU,
      "TensorPipe RPC backend only supports CPU tensors, please move your ",
      "tensors to CPU before sending them over RPC. Found tensor on device: ",
      tensor.device());
}

std::vector<c10::DeviceIndex> getDevicesForTensors(
    const std::string& remoteName,
    const std::vector<torch::Tensor>& tensors,
    const std::unordered_map<std::string, tensorpipe::DeviceMap>& deviceMaps) {
  const auto workerIter = deviceMaps.find(remoteName);
  if (workerIter == deviceMaps.end()) {
    for (const auto& tensor : tensors) {
      checkCPUTensor(tensor);
    }
    return {};
  } else {
    std::vector<c10::DeviceIndex> deviceIndices;
    deviceIndices.reserve(tensors.size());
    const auto& deviceMap = workerIter->second;
    for (const auto& tensor : tensors) {
      const auto deviceIter = deviceMap.find(tensor.device().index());
      if (deviceIter == deviceMap.end()) {
        checkCPUTensor(tensor);
        deviceIndices.push_back(-1);
      } else {
        deviceIndices.push_back(deviceIter->second);
      }
    }
    return deviceIndices;
  }
}

} // namespace

C10_DEFINE_REGISTRY(TensorPipeTransportRegistry, TransportRegistration);

C10_DEFINE_REGISTRY(TensorPipeChannelRegistry, ChannelRegistration);

std::string TensorPipeAgent::guessUvAddress(
    tensorpipe::transport::uv::Context& uvContext) {
  tensorpipe::Error error;
  std::string uvAddress;
  char* ifnameEnv = std::getenv(kSocketIfnameEnvVar.c_str());
  if (ifnameEnv != nullptr) {
    std::tie(error, uvAddress) = uvContext.lookupAddrForIface(ifnameEnv);
    if (error) {
      LOG(WARNING) << "Failed to look up the IP address for interface "
                   << ifnameEnv << " (" << error.what() << "), defaulting to "
                   << kDefaultUvAddress;
      uvAddress = kDefaultUvAddress;
    }
  } else {
    std::tie(error, uvAddress) = uvContext.lookupAddrForHostname();
    if (error) {
      LOG(WARNING) << "Failed to look up the IP address for the hostname ("
                   << error.what() << "), defaulting to " << kDefaultUvAddress;
      uvAddress = kDefaultUvAddress;
    }
  }
  return uvAddress;
}

namespace {

// These priorities instruct TensorPipe on which transport/channel to pick
// during handshake. Higher priorities will take precedence over lower ones.
// The transport with lowest priority will be the one used to bootstrap pipes.

constexpr int64_t kShmTransportPriority = 100;
// The UV transport just uses TCP and should work everywhere, thus keep it last.
constexpr int64_t kUvTransportPriority = 0;

constexpr int64_t kCmaChannelPriority = 200;
constexpr int64_t kMultiplexedUvChannelPriority = 100;
// The basic channel reuses a transport as a channel, and is thus our fallback.
constexpr int64_t kBasicChannelPriority = 0;

std::unique_ptr<TransportRegistration> makeUvTransport() {
  auto context = std::make_shared<tensorpipe::transport::uv::Context>();
  std::string address = TensorPipeAgent::guessUvAddress(*context);
  return std::make_unique<TransportRegistration>(TransportRegistration{
      std::move(context), kUvTransportPriority, std::move(address)});
}

// The UV transport is implemented using standard TCP connections. It leverages
// libuv (https://github.com/libuv/libuv) in order to be cross-platform.
C10_REGISTER_CREATOR(TensorPipeTransportRegistry, uv, makeUvTransport);

#if TENSORPIPE_HAS_SHM_TRANSPORT

std::string createUniqueShmAddr() {
  thread_local uint32_t threadLocalId = 0;
  return c10::str(
      "shm://tensorpipe_rpc_agent_",
      std::this_thread::get_id(),
      "_",
      ::getpid(),
      "_",
      threadLocalId++);
}

std::unique_ptr<TransportRegistration> makeShmTransport() {
  auto context = std::make_shared<tensorpipe::transport::shm::Context>();
  std::string address = createUniqueShmAddr();
  return std::make_unique<TransportRegistration>(TransportRegistration{
      std::move(context), kShmTransportPriority, std::move(address)});
}

// The SHM implements connections using ringbuffers residing in anonymous shared
// memory (plus UNIX domain sockets to bootstrap the connection and exchange
// file descriptors). It is Linux-only due to some advanced features (O_TMPFILE,
// eventfd, ...).
C10_REGISTER_CREATOR(TensorPipeTransportRegistry, shm, makeShmTransport);

#endif

std::unique_ptr<ChannelRegistration> makeBasicChannel() {
  auto context = std::make_shared<tensorpipe::channel::basic::Context>();
  return std::make_unique<ChannelRegistration>(
      ChannelRegistration{std::move(context), kBasicChannelPriority});
}

// The basic channel is just a straightforward adapter wrapper that allows any
// transport to be used as a channel.
C10_REGISTER_CREATOR(TensorPipeChannelRegistry, basic, makeBasicChannel);

#if TENSORPIPE_HAS_CMA_CHANNEL

std::unique_ptr<ChannelRegistration> makeCmaChannel() {
  auto context = std::make_shared<tensorpipe::channel::cma::Context>();
  return std::make_unique<ChannelRegistration>(
      ChannelRegistration{std::move(context), kCmaChannelPriority});
}

// The CMA channel uses the Linux cross-memory attach syscalls (process_vm_readv
// and _writev), which allow one process to access the private memory of another
// process (as long as they belong to the same user and other security
// constraints are satisfied). It does, more or less, what GDB does when it's
// attached to a running process.
C10_REGISTER_CREATOR(TensorPipeChannelRegistry, cma, makeCmaChannel);

#endif

constexpr static int kNumUvThreads = 16;

std::unique_ptr<ChannelRegistration> makeMultiplexedUvChannel() {
  std::vector<std::shared_ptr<tensorpipe::transport::Context>> contexts;
  std::vector<std::shared_ptr<tensorpipe::transport::Listener>> listeners;
  for (int laneIdx = 0; laneIdx < kNumUvThreads; ++laneIdx) {
    auto context = std::make_shared<tensorpipe::transport::uv::Context>();
    std::string address = TensorPipeAgent::guessUvAddress(*context);
    contexts.push_back(std::move(context));
    listeners.push_back(contexts.back()->listen(address));
  }
  auto context = std::make_shared<tensorpipe::channel::mpt::Context>(
      std::move(contexts), std::move(listeners));
  return std::make_unique<ChannelRegistration>(
      ChannelRegistration{std::move(context), kMultiplexedUvChannelPriority});
}

// The multiplexed UV channel encapsulates multiple UV transports (each with its
// own event loop thread). Each channel will, in turn, contain multiple UV
// connections, one for each of those contexts. When sending a tensor, its data
// is split in equal chunks and each chunks is sent on a different connection
// and thus driven by a different thread. This is needed to reach very high
// bandwidths.
C10_REGISTER_CREATOR(
    TensorPipeChannelRegistry,
    mpt_uv,
    makeMultiplexedUvChannel);

} // namespace

//////////////////////////  MetricsTracker  /////////////////////////////////

TensorPipeAgent::TimeSeriesMetricsTracker::TimeSeriesMetricsTracker(
    uint64_t currentSum,
    uint64_t currentCount)
    : currentSum_(currentSum), currentCount_(currentCount) {}

void TensorPipeAgent::TimeSeriesMetricsTracker::addData(uint64_t dataPoint) {
  currentSum_ += dataPoint;
  ++currentCount_;
}

float TensorPipeAgent::TimeSeriesMetricsTracker::computeAverage() const {
  return currentCount_ == 0 ? 0 : currentSum_ / (float)currentCount_;
}

////////////////////////  TensorpipeRpcAgent  /////////////////////////////////

void TensorPipeAgent::collectNames() {
  const worker_id_t selfId = workerInfo_.id_;
  const std::string& selfName = workerInfo_.name_;

  std::vector<uint8_t> selfNameVector(
      (uint8_t*)selfName.c_str(),
      (uint8_t*)selfName.c_str() + selfName.length());
  rankToNameStore_.set(c10::to_string(selfId), selfNameVector);

  workerIdToInfo_.emplace(selfId, WorkerInfo(selfName, selfId));
  workerNameToInfo_.emplace(selfName, WorkerInfo(selfName, selfId));
  for (worker_id_t workerId = 0; workerId < worldSize_; ++workerId) {
    if (workerId == selfId) {
      continue;
    }
    std::vector<uint8_t> workerNameVector =
        rankToNameStore_.get(c10::to_string(workerId));
    std::string workerName(
        (char*)workerNameVector.data(), workerNameVector.size());

    TORCH_CHECK(
        workerNameToInfo_.find(workerName) == workerNameToInfo_.end(),
        "RPC worker name ",
        workerName,
        " is not unique.");

    workerIdToInfo_.emplace(workerId, WorkerInfo(workerName, workerId));
    workerNameToInfo_.emplace(workerName, WorkerInfo(workerName, workerId));
  }
}

TensorPipeAgent::TensorPipeAgent(
    const std::shared_ptr<::c10d::Store>& store,
    std::string selfName,
    worker_id_t selfId,
    int worldSize,
    std::shared_ptr<c10d::ProcessGroup> processGroup,
    TensorPipeRpcBackendOptions opts,
    std::unique_ptr<RequestCallback> cb)
    : RpcAgent(
          WorkerInfo(std::move(selfName), selfId),
          std::move(cb),
          std::chrono::milliseconds(
              (long)(opts.rpcTimeoutSeconds * kSecToMsConversion))),
      opts_(std::move(opts)),
      threadPool_(opts_.numWorkerThreads),
      context_(std::make_shared<tensorpipe::Context>(
          tensorpipe::ContextOptions().name(workerInfo_.name_))),
      rankToNameStore_("names", store),
      nameToAddressStore_("addrs", store),
      worldSize_(worldSize),
      processGroup_(std::move(processGroup)) {
  collectNames();

  // Initialize the time-series metrics tracking map
  timeSeriesMetrics_.emplace(kGilAverageWaitTime, TimeSeriesMetricsTracker());
}

TensorPipeAgent::~TensorPipeAgent() {
  VLOG(1) << "RPC agent for " << workerInfo_.name_ << " is being destroyed";
  shutdown();
}

void TensorPipeAgent::startImpl() {
  VLOG(1) << "RPC agent for " << workerInfo_.name_ << " is starting";

  std::vector<std::string> addresses;
  int lowestPriority = std::numeric_limits<int>::max();
  std::string lowestPriorityTransport;

  for (auto& key : TensorPipeTransportRegistry()->Keys()) {
    int64_t priority = -1;
    if (opts_.transports.has_value()) {
      auto iter =
          std::find(opts_.transports->begin(), opts_.transports->end(), key);
      if (iter == opts_.transports->end()) {
        continue;
      }
      // Assign priorities in reverse order of occurrence in the vector, so that
      // a transport that comes before another receives a higher priority.
      priority =
          opts_.transports->size() - 1 - (iter - opts_.transports->begin());
    }
    std::unique_ptr<TransportRegistration> reg =
        TensorPipeTransportRegistry()->Create(key);
    if (priority == -1) {
      priority = reg->priority;
    }
    if (priority < lowestPriority) {
      lowestPriority = priority;
      lowestPriorityTransport = key;
    }
    addresses.push_back(c10::str(key, "://", reg->address));
    context_->registerTransport(
        priority, std::move(key), std::move(reg->transport));
  }

  for (auto& key : TensorPipeChannelRegistry()->Keys()) {
    int64_t priority = -1;
    if (opts_.channels.has_value()) {
      auto iter =
          std::find(opts_.channels->begin(), opts_.channels->end(), key);
      if (iter == opts_.channels->end()) {
        continue;
      }
      // Assign priorities in reverse order of occurrence in the vector, so that
      // a channel that comes before another receives a higher priority.
      priority = opts_.channels->size() - 1 - (iter - opts_.channels->begin());
    }
    std::unique_ptr<ChannelRegistration> reg =
        TensorPipeChannelRegistry()->Create(key);
    if (priority == -1) {
      priority = reg->priority;
    }
    context_->registerChannel(
        priority, std::move(key), std::move(reg->channel));
  }

  listener_ = context_->listen(addresses);

  // Store our own url.
  const auto address = listener_->url(lowestPriorityTransport);
  const std::vector<uint8_t> selfAddrData(address.begin(), address.end());
  nameToAddressStore_.set(workerInfo_.name_, selfAddrData);

  VLOG(1) << "RPC agent for " << workerInfo_.name_ << " is using address "
          << address;

  for (const auto& p : workerNameToInfo_) {
    const auto& name = p.first;
    auto nodeAddrData = nameToAddressStore_.get(name);
    auto nodeAddrStr =
        std::string((const char*)nodeAddrData.data(), nodeAddrData.size());
    workerNameToURL_.insert({name, nodeAddrStr});
  }

  // Start the Timeout Thread
  timeoutThread_ = std::thread(&TensorPipeAgent::pollTimeoutRpcs, this);

  listener_->accept([this](
                        const tensorpipe::Error& error,
                        std::shared_ptr<tensorpipe::Pipe> pipe) {
    onListenerAccepted(error, pipe);
  });
}

void TensorPipeAgent::onListenerAccepted(
    const tensorpipe::Error& error,
    std::shared_ptr<tensorpipe::Pipe>& pipe) {
  if (error) {
    if (error.isOfType<tensorpipe::ListenerClosedError>() &&
        !rpcAgentRunning_.load()) {
      // This is expected.
    } else {
      LOG(WARNING) << "RPC agent for " << workerInfo_.name_
                   << " encountered error when accepting incoming pipe: "
                   << error.what();
    }
    return;
  }

  // Accept the next connection request
  listener_->accept([this](
                        const tensorpipe::Error& error,
                        std::shared_ptr<tensorpipe::Pipe> pipe) {
    onListenerAccepted(error, pipe);
  });

  VLOG(1) << "RPC agent for " << workerInfo_.name_
          << " accepted incoming pipe from " << pipe->getRemoteName();

  // Arm for server read
  respond(pipe);
}

void TensorPipeAgent::pipeRead(
    const std::shared_ptr<tensorpipe::Pipe>& pipe,
    std::function<void(const tensorpipe::Error&, Message&&)> fn) {
  pipe->readDescriptor([fn{std::move(fn)}, pipe](
                           const tensorpipe::Error& error,
                           tensorpipe::Message tpMessage) mutable {
    if (error) {
      fn(error, Message());
      return;
    }

    TensorpipeReadBuffers tpBuffers = tensorpipeAllocate(tpMessage);

    pipe->read(
        std::move(tpMessage),
        [tpBuffers{
             std::make_shared<TensorpipeReadBuffers>(std::move(tpBuffers))},
         fn{std::move(fn)}](
            const tensorpipe::Error& error,
            tensorpipe::Message tpMessage) mutable {
          if (error) {
            fn(error, Message());
            return;
          }

          // FIXME This does some unpickling, which could be a bit expensive:
          // perhaps it would be best to perform it inside the worker threads?
          Message rpcMessage = tensorpipeDeserialize(
              std::move(tpMessage), std::move(*tpBuffers));

          fn(error, std::move(rpcMessage));
        });
  });
}

void TensorPipeAgent::pipeWrite(
    const std::shared_ptr<tensorpipe::Pipe>& pipe,
    Message&& rpcMessage,
    std::function<void(const tensorpipe::Error&)> fn) {
  tensorpipe::Message tpMessage;
  TensorpipeWriteBuffers tpBuffers;

  const auto& deviceMaps =
      rpcMessage.isRequest() ? opts_.deviceMaps : reverseDeviceMaps_;
  auto devices = getDevicesForTensors(
      pipe->getRemoteName(), rpcMessage.tensors(), deviceMaps);
  std::tie(tpMessage, tpBuffers) =
      tensorpipeSerialize(std::move(rpcMessage), std::move(devices));

  pipe->write(
      std::move(tpMessage),
      [tpBuffers{
           std::make_shared<TensorpipeWriteBuffers>(std::move(tpBuffers))},
       fn{std::move(fn)}](
          const tensorpipe::Error& error, tensorpipe::Message /* unused */) {
        fn(error);
      });
}

void TensorPipeAgent::sendCompletedResponseMessage(
    std::shared_ptr<tensorpipe::Pipe>& pipe,
    std::shared_ptr<FutureMessage>& futureResponseMessage,
    uint64_t messageId) {
  if (!rpcAgentRunning_.load()) {
    LOG(WARNING) << "RPC agent for " << workerInfo_.name_
                 << " won't send response to request #" << messageId << " to "
                 << pipe->getRemoteName() << ", as the agent is shutting down";
    return;
  }

  VLOG(1) << "RPC agent for " << workerInfo_.name_
          << " is sending response to request #" << messageId << " to "
          << pipe->getRemoteName();

  const c10::optional<utils::FutureError> error =
      futureResponseMessage->error();
  Message&& responseMessage = std::move(*futureResponseMessage).moveValue();
  responseMessage.setId(messageId);
  if (!error) {
    for (const auto& tensor : responseMessage.tensors()) {
      if (!tensor.device().is_cpu()) {
        responseMessage = createExceptionResponse(
            c10::str(
                "TensorPipe RPC backend only supports CPU tensors, please ",
                "move your tensors to CPU before sending them over RPC. Found ",
                "tensor on device: ",
                tensor.device()),
            responseMessage.id());
        break;
      }
    }

    pipeWrite(
        pipe,
        std::move(responseMessage),
        [this, pipe, messageId](const tensorpipe::Error& error) {
          if (error) {
            LOG(WARNING)
                << "RPC agent for " << workerInfo_.name_
                << " encountered error when sending response to request #"
                << messageId << " to " << pipe->getRemoteName() << ": "
                << error.what();
            return;
          }

          VLOG(1) << "RPC agent for " << workerInfo_.name_
                  << " done sending response to request #" << messageId
                  << " to " << pipe->getRemoteName();
        });
  } else {
    pipeWrite(
        pipe,
        createExceptionResponse(error->what(), responseMessage.id()),
        [this, pipe, messageId](const tensorpipe::Error& error) {
          if (error) {
            LOG(WARNING)
                << "RPC agent for " << workerInfo_.name_
                << " encountered error when sending response to request #"
                << messageId << " to " << pipe->getRemoteName() << ": "
                << error.what();
            return;
          }

          VLOG(1) << "RPC agent for " << workerInfo_.name_
                  << " done sending response to request #" << messageId
                  << " to " << pipe->getRemoteName();
        });
  }
}

void TensorPipeAgent::respond(std::shared_ptr<tensorpipe::Pipe>& pipe) {
  pipeRead(
      pipe,
      [this, pipe](
          const tensorpipe::Error& error, Message&& requestMessage) mutable {
        if (error) {
          // FIXME This is not a correct way to check whether this error was
          // "intentionally" caused by the remote end shutting down. We should
          // find a better way, Perhaps sending an empty message?
          if ((error.isOfType<tensorpipe::PipeClosedError>() &&
               !rpcAgentRunning_.load()) ||
              error.isOfType<tensorpipe::transport::EOFError>()) {
            // This is expected.
          } else {
            LOG(WARNING)
                << "RPC agent for " << workerInfo_.name_
                << " encountered error when reading incoming request from "
                << pipe->getRemoteName() << ": " << error.what()
                << " (this is expected to happen during shutdown)";
          }
          return;
        }

        // Arm for next read
        respond(pipe);

        uint64_t messageId = requestMessage.id();
        increaseCallCount(serverActiveCalls_);

        VLOG(1) << "RPC agent for " << workerInfo_.name_
                << " received request #" << messageId << " from "
                << pipe->getRemoteName();

        // Defer user RPC UDF run to thread pool
        threadPool_.run([this,
                         pipe,
                         messageId,
                         requestMessage{std::move(requestMessage)}]() mutable {
          VLOG(1) << "RPC agent for " << workerInfo_.name_
                  << " is running request #" << messageId << " from "
                  << pipe->getRemoteName() << " in thread pool";

          std::shared_ptr<FutureMessage> futureResponseMessage;
          try {
            futureResponseMessage = cb_->operator()(requestMessage);
          } catch (const std::exception& e) {
            futureResponseMessage = std::make_shared<FutureMessage>();
            futureResponseMessage->setError(e.what());
          }

          // Shortcut if immediately done
          if (futureResponseMessage->completed()) {
            decreaseCallCount(serverActiveCalls_);
            sendCompletedResponseMessage(
                pipe, futureResponseMessage, messageId);
          } else {
            // Not complete yet
            increaseCallCount(serverActiveAsyncCalls_);
            futureResponseMessage->addCallback(
                [this, pipe, futureResponseMessage, messageId]() mutable {
                  decreaseCallCount(serverActiveCalls_);
                  decreaseCallCount(serverActiveAsyncCalls_);
                  sendCompletedResponseMessage(
                      pipe, futureResponseMessage, messageId);
                });
          }

          VLOG(1) << "RPC agent for " << workerInfo_.name_
                  << " done running request #" << messageId << " from "
                  << pipe->getRemoteName() << " in thread pool";
        });
      });
}

std::shared_ptr<FutureMessage> TensorPipeAgent::send(
    const WorkerInfo& toWorkerInfo,
    Message&& requestMessage,
    const float rpcTimeoutSeconds) {
  TORCH_CHECK(
      requestMessage.isRequest(),
      "TensorPipeAgent::send(..) is only for sending requests.");

  if (!rpcAgentRunning_.load()) {
    auto err = c10::str(
        "Node ",
        RpcAgent::getWorkerInfo().id_,
        "tried to send() a message of type ",
        requestMessage.type(),
        " but RPC is no longer running on this node.");
    throw std::runtime_error(err);
  }

  const auto& url = findWorkerURL(toWorkerInfo);

  std::unique_lock<std::mutex> lock(mutex_);

  // See if we already have a connection to this address or not
  auto it = connectedPipes_.find(toWorkerInfo.id_);
  if (it == connectedPipes_.end()) {
    std::tie(it, std::ignore) = connectedPipes_.emplace(
        toWorkerInfo.id_,
        ClientPipe(context_->connect(
            url, tensorpipe::PipeOptions().remoteName(toWorkerInfo.name_))));
  }
  ClientPipe& clientPipe = it->second;
  auto& pendingResponseMessage = clientPipe.pendingResponseMessage_;

  auto futureResponseMessage = std::make_shared<AtomicFutureMessage>();
  uint64_t messageId = nextMessageID_++;
  requestMessage.setId(messageId);
  pendingResponseMessage[messageId] = futureResponseMessage;

  lock.unlock();

  futureResponseMessage->futMsg.addCallback([this]() {
    TORCH_INTERNAL_ASSERT(
        this->threadPool_.inThreadPool(),
        "Future marked complete from outside the thread pool");
  });

  increaseCallCount(clientActiveCalls_);
  // Use the default RPC timeout if no timeout is specified for this send call
  auto timeout = rpcTimeoutSeconds == kUnsetRpcTimeout
      ? getRpcTimeout()
      : std::chrono::milliseconds(
            static_cast<int>(rpcTimeoutSeconds * kSecToMsConversion));

  // We only add to the timeoutMap_ if the timeout is not 0. Per our
  // documentation, a user-provided timeout of 0 indicates the RPC should never
  // expire (infinite timeout), so there is no need to track it in the
  // timeoutMap_.
  if (timeout.count() != 0) {
    // Compute the expiration time for this message based on the timeout
    auto expirationTime = computeRpcMessageExpiryTime(timeout);

    // Add the Future to the right vector in the timeoutMap_
    {
      std::unique_lock<std::mutex> lock(timeoutMapMutex_);
      auto& timeoutFuturesVector = timeoutMap_[expirationTime];
      timeoutFuturesVector.emplace_back(futureResponseMessage, timeout);
    }
    timeoutThreadCV_.notify_one();
  }

  VLOG(1) << "RPC agent for " << workerInfo_.name_ << " is sending request #"
          << messageId << " to " << clientPipe.pipe_->getRemoteName();

  pipeWrite(
      clientPipe.pipe_,
      std::move(requestMessage),
      [this, &clientPipe, messageId](const tensorpipe::Error& error) mutable {
        if (error) {
          if (error.isOfType<tensorpipe::PipeClosedError>() &&
              !rpcAgentRunning_.load()) {
            // This is expected.
          } else {
            LOG(WARNING) << "RPC agent for " << workerInfo_.name_
                         << " encountered error when sending outgoing request #"
                         << messageId << " to "
                         << clientPipe.pipe_->getRemoteName() << ": "
                         << error.what();
          }
          auto pendingFutIt =
              clientPipe.pendingResponseMessage_.find(messageId);
          if (pendingFutIt != clientPipe.pendingResponseMessage_.end()) {
            markFutureWithError(pendingFutIt->second, error.what());
          }
          return;
        }

        VLOG(1) << "RPC agent for " << workerInfo_.name_ << " sent request #"
                << messageId << " to " << clientPipe.pipe_->getRemoteName();

        pipeRead(
            clientPipe.pipe_,
            [this, &clientPipe](
                const tensorpipe::Error& error, Message&& responseMessage) {
              if (error) {
                if (error.isOfType<tensorpipe::PipeClosedError>() &&
                    !rpcAgentRunning_.load()) {
                  // This is expected.
                } else {
                  LOG(WARNING)
                      << "RPC agent for " << workerInfo_.name_
                      << " encountered error when reading incoming response from "
                      << clientPipe.pipe_->getRemoteName() << ": "
                      << error.what();
                }
                // We may get garbage content in responseMessage upon error.
                // Flushing all future messages belonging to this pipe due to
                // error state.
                decltype(clientPipe.pendingResponseMessage_) pendingMsgs;
                {
                  std::lock_guard<std::mutex> lock(mutex_);
                  std::swap(clientPipe.pendingResponseMessage_, pendingMsgs);
                  clientPipe.readError_ = true;
                }
                std::string errorMsg = error.what();
                for (auto& p : pendingMsgs) {
                  markFutureWithError(std::move(p.second), errorMsg);
                }
                return;
              }

              // Identify future response message by message ID
              uint64_t messageId = responseMessage.id();

              VLOG(1) << "RPC agent for " << workerInfo_.name_
                      << " received response #" << messageId << " from "
                      << clientPipe.pipe_->getRemoteName();

              std::shared_ptr<AtomicFutureMessage> futureResponseMessage;
              {
                std::lock_guard<std::mutex> lock(mutex_);
                // A read error will lead all following callbacks to be
                // invoked with error, and shouldn't reach here.
                TORCH_INTERNAL_ASSERT(
                    !clientPipe.readError_, "Shouldn't in error state");
                auto it = clientPipe.pendingResponseMessage_.find(messageId);
                TORCH_INTERNAL_ASSERT(
                    it != clientPipe.pendingResponseMessage_.end(),
                    "message ID ",
                    messageId,
                    " is not recognized");
                futureResponseMessage = std::move(it->second);
                clientPipe.pendingResponseMessage_.erase(it);
              }

              if (responseMessage.type() == MessageType::EXCEPTION) {
                markFutureWithError(
                    std::move(futureResponseMessage),
                    std::string(
                        responseMessage.payload().begin(),
                        responseMessage.payload().end()));
              } else {
                markFutureAsComplete(
                    std::move(futureResponseMessage),
                    std::move(responseMessage));
              }
            });
      });

  return std::shared_ptr<FutureMessage>(
      futureResponseMessage, &futureResponseMessage->futMsg);
}

void TensorPipeAgent::pollTimeoutRpcs() {
  while (rpcAgentRunning_.load()) {
    std::unique_lock<std::mutex> lock(timeoutMapMutex_);

    // We sleep until the earliest expiring RPC in the timeoutMap_. We must
    // also ensure that we sleep while the map is empty, and we exit sleeping
    // if the RPC Agent has been shutdown.
    for (;;) {
      if (!rpcAgentRunning_.load()) {
        return;
      }

      if (!timeoutMap_.empty()) {
        steady_clock_time_point earliestTimeout = timeoutMap_.begin()->first;
        if (std::chrono::steady_clock::now() >= earliestTimeout) {
          break;
        }
        timeoutThreadCV_.wait_until(lock, earliestTimeout);
      } else {
        timeoutThreadCV_.wait(lock);
      }
    }

    // Move all these futures to a separate vector so we can process them
    // outside the lock.
    std::vector<std::pair<
        std::shared_ptr<AtomicFutureMessage>,
        std::chrono::milliseconds>>
        timedOutFutures = std::move(timeoutMap_.begin()->second);
    // We can safely remove this key from the timeoutMap_ since all these
    // futures will be processed.
    timeoutMap_.erase(timeoutMap_.begin());

    lock.unlock();

    // Set an error on futures added to the timedOutFutures vector. We do this
    // outside the lock to prevent potential lock-order-inversions by callbacks
    // triggered by the setError call.
    for (auto& futureTimeoutPair : timedOutFutures) {
      std::string errorMsg =
          fmt::format(kRpcTimeoutErrorStr, futureTimeoutPair.second.count());
      auto err = makeRPCError(errorMsg, RPCErrorType::TIMEOUT);
      markFutureWithError(std::move(futureTimeoutPair.first), std::move(err));
    }
  }
}

// TODO: Remove sync()
void TensorPipeAgent::sync() {
  VLOG(1) << "RPC agent for " << workerInfo_.name_ << " is syncing (no-op)";
}

// TODO: Remove join()
void TensorPipeAgent::join() {
  VLOG(1) << "RPC agent for " << workerInfo_.name_ << " is joining";
  // This method behaves like a barrier, as it can only return once all workers
  // have no more requests pending, including "nested" requests (triggered from
  // within the remote code of another call) and "follow-up" requests (triggered
  // from the callback of a future).
  while (true) {
    {
      std::unique_lock<std::mutex> lock(callCountMutex_);
      // It is enough to wait for there to be no more active client calls, since
      // each server call corresponds to a client call for some other worker.
      callCountCV_.wait(lock, [this] { return clientActiveCalls_ == 0; });
      // We'd like to immediately proceed with the allreduce, but it's a call
      // that may block for some time, as it waits for other workers to also
      // complete all their active client calls. While we call allreduce we must
      // hold the mutex, or else the count we send to other workers may get
      // stale (e.g., if some nested call happens in the meantime). But we can't
      // hold the lock for an indeterminately long time, as that would block
      // other operations (e.g., send). Thus we must release the lock and only
      // re-acquire it when all workers are ready to proceed with the allreduce.
      // We perform this synchronization using a barrier.
    }
    VLOG(1) << "RPC agent for " << workerInfo_.name_
            << " completed all client calls and is entering a barrier";
    processGroup_->barrier()->wait();
    {
      std::unique_lock<std::mutex> lock(callCountMutex_);
      // At this point, the count may have become non-zero again. We can't wait
      // for those calls to complete as other workers are waiting for us in the
      // allreduce and we would block them. Thus we send our count even if it is
      // non-zero and if anyone (be it us or another worker) has a non-zero
      // count we'll just do another round.
      VLOG(1) << "RPC agent for " << workerInfo_.name_
              << " exited the barrier and found " << clientActiveCalls_
              << " active client calls";
      std::vector<at::Tensor> totalClientActiveCalls = {
          at::zeros({}, at::kLong)};
      *totalClientActiveCalls[0].data_ptr<int64_t>() = clientActiveCalls_;
      processGroup_->allreduce(totalClientActiveCalls)->wait();
      VLOG(1) << "RPC agent for " << workerInfo_.name_
              << " completed the allreduce and got a total of "
              << (*totalClientActiveCalls[0].data_ptr<int64_t>())
              << " active client calls across all workers";
      if (*totalClientActiveCalls[0].data_ptr<int64_t>() == 0) {
        break;
      }
    }
  }
  VLOG(1) << "RPC agent for " << workerInfo_.name_ << " done joining";
}

void TensorPipeAgent::shutdownImpl() {
  // FIXME Isn't it too verbose for a library to print logs in normal operation?
  LOG(INFO) << "RPC agent for " << workerInfo_.name_ << " is shutting down";

  // Join the Timeout Thread
  timeoutThreadCV_.notify_one();
  if (timeoutThread_.joinable()) {
    timeoutThread_.join();
  }
  VLOG(1) << "RPC agent for " << workerInfo_.name_
          << " done waiting for timeout thread to join";

  // This will close all the pipes and listeners, invoke all callbacks with
  // errors, turn down the I/O event loops and wait for everything to terminate.
  context_->join();
  VLOG(1) << "RPC agent for " << workerInfo_.name_
          << " done waiting for TensorPipe context to join";

  // NOTE: We need to call waitWorkComplete in the end after we have shutdown
  // all listeners for Tensorpipe. This is to drain any already accepted work
  // in the ThreadPool. If this is done before we shutdown the listeners,
  // additional work could be added after this call and before we shutdown
  // listeners. This work would continue executing in the threadpool and might
  // cause issues during shutdown of the system.
  threadPool_.waitWorkComplete();
  VLOG(1) << "RPC agent for " << workerInfo_.name_
          << " done waiting for thread pool to complete work";
}

const WorkerInfo& TensorPipeAgent::getWorkerInfo(
    const std::string& workerName) const {
  const auto& it = workerNameToInfo_.find(workerName);
  TORCH_CHECK(
      it != workerNameToInfo_.end(), "Unknown destination worker ", workerName);
  return it->second;
}

const WorkerInfo& TensorPipeAgent::getWorkerInfo(worker_id_t workerId) const {
  const auto& it = workerIdToInfo_.find(workerId);
  TORCH_CHECK(
      it != workerIdToInfo_.end(), "Unknown destination worker ", workerId);
  return it->second;
}

std::vector<WorkerInfo> TensorPipeAgent::getWorkerInfos() const {
  std::vector<WorkerInfo> workerInfos;
  for (auto& item : workerNameToInfo_) {
    workerInfos.emplace_back(item.second);
  }
  return workerInfos;
}

const std::string& TensorPipeAgent::findWorkerURL(
    const WorkerInfo& worker) const {
  const auto it = workerNameToURL_.find(worker.name_);
  TORCH_CHECK(
      it != workerNameToURL_.end(), "Unknown worker name: ", worker.name_);
  return it->second;
}

std::unordered_map<std::string, std::string> TensorPipeAgent::getMetrics() {
  std::unordered_map<std::string, std::string> metrics;
  metrics[kThreadPoolSize] = c10::to_string(threadPool_.size());
  metrics[kNumIdleThreads] = c10::to_string(threadPool_.numAvailable());
  {
    std::unique_lock<std::mutex> lock(callCountMutex_);
    metrics[kClientActiveCalls] = c10::to_string(clientActiveCalls_);
    metrics[kServerActiveCalls] = c10::to_string(serverActiveCalls_);
    metrics[kServerActiveAsyncCalls] = c10::to_string(serverActiveAsyncCalls_);
  }
  if (isGILProfilingEnabled()) {
    {
      std::unique_lock<std::mutex> lock(metricsMutex_);
      // Include the averages for each time series metric. This is just the GIL
      // Wait Time for now.
      auto averageGilWaitTime =
          timeSeriesMetrics_[kGilAverageWaitTime].computeAverage();
      lock.unlock();
      metrics[kGilAverageWaitTime] = c10::to_string(averageGilWaitTime);
    }
  }

  return metrics;
}

void TensorPipeAgent::addGilWaitTime(
    const std::chrono::microseconds gilWaitTime) {
  std::lock_guard<std::mutex> lock(metricsMutex_);
  timeSeriesMetrics_[kGilAverageWaitTime].addData(gilWaitTime.count());
}

TensorPipeAgent::NetworkDataDict TensorPipeAgent::getNetworkData() {
  std::lock_guard<std::mutex> lock(networkDataMutex_);
  return networkData_;
}

NetworkSourceInfo TensorPipeAgent::getNetworkSourceInfo() {
  NetworkSourceInfo info = {
      RpcAgent::getWorkerInfo().id_,
      nameToAddressStore_.get(RpcAgent::getWorkerInfo().name_)};

  return info;
}

void TensorPipeAgent::trackNetworkData(
    uint64_t requestSize,
    uint64_t responseSize,
    const std::string& destWorkerName) {
  std::lock_guard<std::mutex> lock(networkDataMutex_);
  networkData_[destWorkerName].numCalls++;
  networkData_[destWorkerName].totalSentBytes += requestSize;
  networkData_[destWorkerName].totalRecvBytes += responseSize;
}

void TensorPipeAgent::trackNetworkError(
    uint64_t requestSize,
    const std::string& destWorkerName) {
  std::lock_guard<std::mutex> lock(networkDataMutex_);
  networkData_[destWorkerName].numCalls++;
  networkData_[destWorkerName].totalSentBytes += requestSize;
  networkData_[destWorkerName].totalErrors++;
}

void TensorPipeAgent::increaseCallCount(int32_t& count) {
  {
    std::unique_lock<std::mutex> lock(callCountMutex_);
    ++count;
  }
  callCountCV_.notify_all();
}

void TensorPipeAgent::decreaseCallCount(int32_t& count) {
  {
    std::unique_lock<std::mutex> lock(callCountMutex_);
    --count;
  }
  callCountCV_.notify_all();
}

void TensorPipeAgent::markFutureAsComplete(
    std::shared_ptr<AtomicFutureMessage> futureMessage,
    Message message) {
  if (!futureMessage->isComplete.test_and_set()) {
    // Completing the future will run its callbacks, which could execute
    // arbitrary user code. To prevent blocking or stalling the TensorPipe event
    // loops, we defer this to a worker thread.
    threadPool_.run([this,
                     futureMessage{std::move(futureMessage)},
                     message{std::move(message)}]() mutable {
      futureMessage->futMsg.markCompleted(std::move(message));
      // The future's callbacks may schedule further RPCs, increasing the count.
      // Thus we must decrease it after completing the future, otherwise it may
      // briefly dip to zero and trick join into thinking all work is done.
      decreaseCallCount(clientActiveCalls_);
    });
  }
}

void TensorPipeAgent::markFutureWithError(
    std::shared_ptr<AtomicFutureMessage> futureMessage,
    std::string errorMsg) {
  if (!futureMessage->isComplete.test_and_set()) {
    // Completing the future will run its callbacks, which could execute
    // arbitrary user code. To prevent blocking or stalling the TensorPipe event
    // loops, we defer this to a worker thread.
    threadPool_.run([this,
                     futureMessage{std::move(futureMessage)},
                     errorMsg{std::move(errorMsg)}]() mutable {
      futureMessage->futMsg.setError(std::move(errorMsg));
      // The future's callbacks may schedule further RPCs, increasing the count.
      // Thus we must decrease it after completing the future, otherwise it may
      // briefly dip to zero and trick join into thinking all work is done.
      decreaseCallCount(clientActiveCalls_);
    });
  }
}

} // namespace rpc
} // namespace distributed
} // namespace torch

#endif // USE_TENSORPIPE