File: tensorpipe_agent.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (374 lines) | stat: -rw-r--r-- 12,561 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#pragma once

#ifdef USE_TENSORPIPE

#include <atomic>
#include <thread>

#include <c10/core/thread_pool.h>
#include <c10d/PrefixStore.hpp>
#include <c10d/ProcessGroup.hpp>
#include <c10d/Store.hpp>
#include <torch/csrc/distributed/rpc/rpc_agent.h>

// Forward-declare the TensorPipe classes we need, to avoid including its
// headers in PyTorch's ones and thus have it become a public dependency.

namespace tensorpipe {

class CpuBuffer;
class Context;
class Error;
class Listener;
class Message;
class Pipe;

namespace transport {
class Context;
namespace uv {
class Context;
} // namespace uv
} // namespace transport

namespace channel {
template <typename TBuffer>
class Context;
using CpuContext = Context<CpuBuffer>;
} // namespace channel

using DeviceMap = std::unordered_map<c10::DeviceIndex, c10::DeviceIndex>;

} // namespace tensorpipe

namespace torch {
namespace distributed {
namespace rpc {

using steady_clock_time_point =
    std::chrono::time_point<std::chrono::steady_clock>;

struct TransportRegistration {
  std::shared_ptr<tensorpipe::transport::Context> transport;
  int64_t priority;
  std::string address;
};

C10_DECLARE_REGISTRY(TensorPipeTransportRegistry, TransportRegistration);

struct ChannelRegistration {
  std::shared_ptr<tensorpipe::channel::CpuContext> channel;
  int64_t priority;
};

C10_DECLARE_REGISTRY(TensorPipeChannelRegistry, ChannelRegistration);

constexpr auto kDefaultNumWorkerThreads = 16;

struct TensorPipeRpcBackendOptions : public RpcBackendOptions {
  TensorPipeRpcBackendOptions(
      int numWorkerThreads,
      optional<std::vector<std::string>> transports,
      optional<std::vector<std::string>> channels,
      float rpc_timeout,
      std::string init_method,
      std::unordered_map<std::string, tensorpipe::DeviceMap> device_maps = {})
      : RpcBackendOptions(rpc_timeout, init_method),
        numWorkerThreads(numWorkerThreads),
        transports(std::move(transports)),
        channels(std::move(channels)),
        deviceMaps(std::move(device_maps)) {
    TORCH_CHECK(
        numWorkerThreads > 0,
        "num_worker_threads must be positive, got ",
        numWorkerThreads);

    if (transports.has_value()) {
      for (const std::string& transportName : transports.value()) {
        TORCH_CHECK(
            TensorPipeTransportRegistry()->Has(transportName),
            "Unknown transport: ",
            transportName);
      }
    }

    if (channels.has_value()) {
      for (const std::string& channelName : channels.value()) {
        TORCH_CHECK(
            TensorPipeChannelRegistry()->Has(channelName),
            "Unknown channel: ",
            channelName);
      }
    }
  }

  void setDeviceMap(
      const std::string& workerName,
      const tensorpipe::DeviceMap& deviceMap) {
    auto iter = deviceMaps.find(workerName);
    if (iter == deviceMaps.end()) {
      deviceMaps[workerName] = deviceMap;
    } else {
      for (auto& entry : deviceMap) {
        iter->second[entry.first] = entry.second;
      }
    }
  }

  int numWorkerThreads;
  const optional<std::vector<std::string>> transports;
  const optional<std::vector<std::string>> channels;
  std::unordered_map<std::string, tensorpipe::DeviceMap> deviceMaps;
};

// Struct to track the network source metrics
struct NetworkSourceInfo {
  worker_id_t srcRank;
  std::vector<uint8_t> srcMachineAddr;
};

// Struct to track aggregated network metrics
struct AggregatedNetworkData {
  uint64_t numCalls{0};
  uint64_t totalSentBytes{0};
  uint64_t totalRecvBytes{0};
  uint64_t totalErrors{0};
};

// TensorPipeAgent leverages TensorPipe (https://github.com/pytorch/tensorpipe)
// to transparently move tensors and payloads through the fastest available
// transport or channel. It acts like a hybrid RPC transport, providing shared
// memory (linux) and TCP (linux & mac) support. CUDA support is in progress.
class TensorPipeAgent : public RpcAgent {
 public:
  TensorPipeAgent(
      const std::shared_ptr<::c10d::Store>& store,
      std::string selfName,
      worker_id_t selfId,
      int worldSize,
      std::shared_ptr<c10d::ProcessGroup> processGroup,
      TensorPipeRpcBackendOptions opts,
      std::unique_ptr<RequestCallback> cb);

  TensorPipeAgent(const TensorPipeAgent&) = delete;
  TensorPipeAgent& operator=(const TensorPipeAgent&) = delete;

  std::shared_ptr<FutureMessage> send(
      const WorkerInfo& to,
      Message&& message,
      const float rpcTimeoutSeconds = kUnsetRpcTimeout) override;

  // join() and sync() would be deprecated -
  // https://github.com/pytorch/pytorch/issues/27647
  void join() override;
  void sync() override;
  void startImpl() override;
  void shutdownImpl() override;

  ~TensorPipeAgent() override;

  const WorkerInfo& getWorkerInfo(const std::string& workerName) const override;
  const WorkerInfo& getWorkerInfo(worker_id_t workerId) const override;
  std::vector<WorkerInfo> getWorkerInfos() const override;
  void setReverseDeviceMaps(
      const std::unordered_map<std::string, tensorpipe::DeviceMap>&
          reverseDeviceMaps) {
    reverseDeviceMaps_ = reverseDeviceMaps;
  }

  std::unordered_map<std::string, std::string> getMetrics() override;

  void addGilWaitTime(const std::chrono::microseconds gilWaitTime) override;

  using NetworkDataDict =
      std::unordered_map<std::string, AggregatedNetworkData>;

  // Returns metrics tracked by the NetworkDataDict
  NetworkDataDict getNetworkData();
  // Returns NetworkSourceInfo struct
  NetworkSourceInfo getNetworkSourceInfo();

  static std::string guessUvAddress(
      tensorpipe::transport::uv::Context& uvContext);

 private:
  // Populates workerIdToInfo_ and workerNameToInfo_ using addressStore_
  void collectNames();

  const std::string& findWorkerURL(const WorkerInfo& worker) const;

  // TensorPipe read function that could be used to read response messages
  // by client, and read request messages by server.
  void pipeRead(
      const std::shared_ptr<tensorpipe::Pipe>&,
      std::function<void(const tensorpipe::Error&, Message&&)>);

  // TensorPipe write function that could be used to write response
  // messages by server, and write request messages by client.
  void pipeWrite(
      const std::shared_ptr<tensorpipe::Pipe>&,
      Message&& message,
      std::function<void(const tensorpipe::Error&)>);

  // Callback of listener accept()
  void onListenerAccepted(
      const tensorpipe::Error& error,
      std::shared_ptr<tensorpipe::Pipe>& pipe);

  // Respond to a call from a peer
  void respond(std::shared_ptr<tensorpipe::Pipe>& pipe);

  void sendCompletedResponseMessage(
      std::shared_ptr<tensorpipe::Pipe>& pipe,
      std::shared_ptr<FutureMessage>& futureResponseMessage,
      uint64_t messageId);

  // Collects metrics from successful RPC calls
  void trackNetworkData(
      uint64_t requestSize,
      uint64_t responseSize,
      const std::string& destWorkerName);

  // Collects metrics from failed RPC calls
  void trackNetworkError(
      uint64_t requestSize,
      const std::string& destWorkerName);

  // When a request+response completes, we need to mark the future message as
  // complete. However, if its timeout has already expired, it already has an
  // error set. There is no atomic "test-and-set" way to mark a future complete
  // only if it isn't yet. It does exist for errors (setErrorIfNeeded) but, even
  // then, it ends up printing a log message, which may worry the user. To solve
  // both issues we use a separate atomic flag to know the status of the future.
  struct AtomicFutureMessage {
    FutureMessage futMsg;
    std::atomic_flag isComplete = ATOMIC_FLAG_INIT;
  };

  // Maintains state per client pipe to track pending response messages and
  // error states. pendingResponseMessage_ should be protected by a mutex since
  // it can be raced with user send() call.
  // TODO: To achieve better performance we can have a pipe pool per
  // client that can be configured using RpcBackendOptions.
  struct ClientPipe {
    explicit ClientPipe(std::shared_ptr<tensorpipe::Pipe> pipe) : pipe_(pipe) {}
    std::shared_ptr<tensorpipe::Pipe> pipe_;
    bool readError_{false};
    // Map from Message Request ID's to corresponding futures.
    std::unordered_map<uint64_t, std::shared_ptr<AtomicFutureMessage>>
        pendingResponseMessage_;
  };

  const TensorPipeRpcBackendOptions opts_;
  std::unordered_map<std::string, tensorpipe::DeviceMap> reverseDeviceMaps_;

  ThreadPool threadPool_;
  std::shared_ptr<tensorpipe::Context> context_;
  std::shared_ptr<tensorpipe::Listener> listener_;
  std::unordered_map<worker_id_t, ClientPipe> connectedPipes_;

  // Maps keyed on name and id for easy WorkerInfo lookup.
  std::unordered_map<worker_id_t, WorkerInfo> workerIdToInfo_;
  std::unordered_map<std::string, WorkerInfo> workerNameToInfo_;
  std::unordered_map<std::string, std::string> workerNameToURL_;

  ::c10d::PrefixStore rankToNameStore_;
  ::c10d::PrefixStore nameToAddressStore_;
  const int worldSize_;

  // The join method is required to behave like a barrier and perform collective
  // operations. For simplicity and reliability, we offload this to a process
  // group, but probably one day we might want to re-implement them using RPCs.
  const std::shared_ptr<c10d::ProcessGroup> processGroup_;

  mutable std::mutex mutex_;
  uint64_t nextMessageID_{0};

  // Map to store the expiration times for each message.
  std::map<
      steady_clock_time_point,
      std::vector<std::pair<
          std::shared_ptr<AtomicFutureMessage>,
          std::chrono::milliseconds>>>
      timeoutMap_;

  // Thread that will poll the timeoutMap_ for timed out messages and mark them
  // with an error accordingly
  std::thread timeoutThread_;

  // Function run by the timeoutThread_ to check for timed out RPCs
  void pollTimeoutRpcs();

  // Mutex to guard the timeoutMap_
  std::mutex timeoutMapMutex_;

  // Condition Variable to signal population of the timeoutMap_
  std::condition_variable timeoutThreadCV_;

  // Returns the expiration time for an RPC by adding the current time to the
  // passed in timeout.
  inline steady_clock_time_point computeRpcMessageExpiryTime(
      std::chrono::milliseconds timeout) const {
    return std::chrono::time_point_cast<std::chrono::milliseconds>(
        std::chrono::steady_clock::now() + timeout);
  }

  // This is a generic struct for capturing Time-Series Metrics. It keeps a
  // running sum and count of data points (observations), and can return an
  // average of the data points seen so far. This is currently only used for
  // tracking the GIL Wait Time in RPC Agents, but can be used for other metrics
  // as well.
  struct TimeSeriesMetricsTracker {
    // Running sum of the data points seen so far
    uint64_t currentSum_;
    // Running count of the data points seen so far
    uint64_t currentCount_;

    explicit TimeSeriesMetricsTracker(
        uint64_t currentSum = 0,
        uint64_t currentCount = 0);

    // Adds a data point (which is basically one observation for the metric
    // being tracked) to the running sum and count.
    void addData(uint64_t dataPoint);
    // Returns the average of all the data points seen so far.
    float computeAverage() const;
  };

  // Map of Time-Series metrics tracked by the RPC Agent
  std::unordered_map<std::string, TimeSeriesMetricsTracker> timeSeriesMetrics_;
  // Mutex to guard timeSeriesMetrics_
  std::mutex metricsMutex_;

  // Map to Track Network Data
  NetworkDataDict networkData_;
  // Mutex to guard networkData_
  std::mutex networkDataMutex_;

  // A mutex and a cv to guard access to the call counts and watch for changes.
  std::mutex callCountMutex_;
  std::condition_variable callCountCV_;
  // Running total of un-processed, un-errored RPC calls sent
  int32_t clientActiveCalls_{0};
  // Running total of un-processed RPC requests received
  int32_t serverActiveCalls_{0};
  // Running total of RPC requests that will be completed asynchronously
  int32_t serverActiveAsyncCalls_{0};

  // Helpers to modify the counts while correctly dealing with the mutex and cv.
  void increaseCallCount(int32_t& count);
  void decreaseCallCount(int32_t& count);

  // Helpers to set the state of the requests.
  void markFutureAsComplete(
      std::shared_ptr<AtomicFutureMessage> futureMessage,
      Message message);
  void markFutureWithError(
      std::shared_ptr<AtomicFutureMessage> futureMessage,
      std::string errorMsg);
};

} // namespace rpc
} // namespace distributed
} // namespace torch

#endif // USE_TENSORPIPE