1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
|
#pragma once
#ifdef USE_TENSORPIPE
#include <torch/csrc/distributed/rpc/utils.h>
namespace tensorpipe {
class Message;
} // namespace tensorpipe
namespace torch {
namespace distributed {
namespace rpc {
// A struct that holds pointers that keep alive all the memory that will be
// accessed by TensorPipe during a write operation.
struct TensorpipeWriteBuffers {
// Allocate on heap so pointers stay valid as we move the holder.
std::unique_ptr<MessageType> type;
std::unique_ptr<int64_t> id;
std::vector<char> payload;
std::vector<char> pickle;
// This contains the original tensors and the clones of the sparse tensors.
std::vector<torch::Tensor> tensors;
// This contains the copies of the data of the tensors that didn't own their
// memory, e.g., the ones created from torch::from_blob() with no deleter.
std::vector<std::vector<char>> copiedTensors;
};
// A struct that holds pointers that keep alive all the memory that will be
// accessed by TensorPipe during a read operation.
struct TensorpipeReadBuffers {
// Allocate on heap so pointers stay valid as we move the holder.
std::unique_ptr<MessageType> type;
std::unique_ptr<int64_t> id;
std::vector<char> payload;
std::vector<char> pickle;
std::vector<c10::DataPtr> tensors;
};
// Convert an RPC message into a TensorPipe message, plus a holder to all the
// data that must be kept alive while the write is performed asynchronously.
TORCH_API std::tuple<tensorpipe::Message, TensorpipeWriteBuffers>
tensorpipeSerialize(
Message&& rpcMessage,
std::vector<c10::DeviceIndex> devices = {});
// Allocate the buffers that will hold the incoming data. They will be managed
// by the returned holder, which must be kept alive until the asynchronous read
// has finished. Pointers to these buffers will be stored in-place in the
// TensorPipe message.
TORCH_API TensorpipeReadBuffers
tensorpipeAllocate(tensorpipe::Message& tpMessage);
// Convert a TensorPipe message back into an RPC message. This requires the data
// to be available and can thus only be performed once the asynchronous read has
// completed. The holder can be destroyed once this function returns.
TORCH_API Message tensorpipeDeserialize(
tensorpipe::Message&& tpMessage,
TensorpipeReadBuffers&& holder);
} // namespace rpc
} // namespace distributed
} // namespace torch
#endif // USE_TENSORPIPE
|