File: serialization.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (169 lines) | stat: -rw-r--r-- 5,688 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "torch/csrc/generic/serialization.cpp"
#else

#ifdef THC_GENERIC_FILE
#include <c10/cuda/CUDAGuard.h>
#endif

// save_save is necessary since the old eager format saved storages as
// [size + data], but the v1.5 eager format removes this since size is saved in
// the filesize.
template <class io>
void THPStorage_(writeFileRaw)(THWStorage *self, io fd, bool save_size)
{
#ifdef THC_GENERIC_FILE
  c10::cuda::CUDAGuard guard(self->device());
#endif

  scalar_t *data;
  int64_t size_bytes = self->nbytes();
  int64_t numel = size_bytes / sizeof(scalar_t);
#ifndef THC_GENERIC_FILE
  data = THWStorage_(data)(LIBRARY_STATE self);
#else
  std::unique_ptr<char[]> cpu_data(new char[size_bytes]);
  data = (scalar_t*)cpu_data.get();
  THCudaCheck(cudaMemcpy(
      data,
      THWStorage_(data)(LIBRARY_STATE self),
      size_bytes,
      cudaMemcpyDeviceToHost));
#endif
  if (save_size) {
    if (torch::utils::THP_nativeByteOrder() ==
        torch::utils::THPByteOrder::THP_LITTLE_ENDIAN)
      doWrite(fd, &numel, sizeof(int64_t));
    else {
      int64_t nsize; // convert big endian cpu to little endian storage
      torch::utils::THP_encodeInt64Buffer(
          (uint8_t*)&nsize,
          (const int64_t*)&numel,
          torch::utils::THPByteOrder::THP_LITTLE_ENDIAN,
          1);
      doWrite(fd, &nsize, sizeof(int64_t));
    }
  }
  // fast track for bytes and little endian
  if (sizeof(scalar_t) == 1 ||
      torch::utils::THP_nativeByteOrder() ==
          torch::utils::THPByteOrder::THP_LITTLE_ENDIAN) {
    doWrite(fd, data, size_bytes);
  } else {
    int64_t buffer_size = std::min(numel, (int64_t)5000);
    std::unique_ptr<uint8_t[]> le_buffer(new uint8_t[buffer_size * sizeof(scalar_t)]);
    for (int64_t i = 0; i < numel; i += buffer_size) {
      size_t to_convert = std::min(numel - i, buffer_size);
      if (sizeof(scalar_t) == 2) {
        torch::utils::THP_encodeInt16Buffer(
            (uint8_t*)le_buffer.get(),
            (const int16_t*)data + i,
            torch::utils::THPByteOrder::THP_LITTLE_ENDIAN,
            to_convert);
      } else if (sizeof(scalar_t) == 4) {
        torch::utils::THP_encodeInt32Buffer(
            (uint8_t*)le_buffer.get(),
            (const int32_t*)data + i,
            torch::utils::THPByteOrder::THP_LITTLE_ENDIAN,
            to_convert);
      } else if (sizeof(scalar_t) == 8) {
        torch::utils::THP_encodeInt64Buffer(
            (uint8_t*)le_buffer.get(),
            (const int64_t*)data + i,
            torch::utils::THPByteOrder::THP_LITTLE_ENDIAN,
            to_convert);
      }
      doWrite(fd, le_buffer.get(), to_convert * sizeof(scalar_t));
    }
  }
}

template void THPStorage_(writeFileRaw<int>)(THWStorage *self, int fd, bool save_size);
template void THPStorage_(writeFileRaw<PyObject*>)(THWStorage *self, PyObject* fd, bool save_size);

template <class io>
THWStorage * THPStorage_(readFileRaw)(io file, THWStorage *_storage)
{
#ifdef THC_GENERIC_FILE
  c10::cuda::OptionalCUDAGuard guard;
  if (_storage != nullptr) {
    guard.set_device(_storage->device());
  }
#endif

  scalar_t *data;
  int64_t size;
  doRead(file, &size, sizeof(int64_t));
  if (torch::utils::THP_nativeByteOrder() ==
      torch::utils::THPByteOrder::THP_BIG_ENDIAN) {
    int64_t nsize; // convert little endian storage to big endian cpu
    nsize = size;
    torch::utils::THP_decodeInt64Buffer(
        &size, (const uint8_t*)&nsize, torch::utils::THP_nativeByteOrder(), 1);
  }
  THWStoragePtr storage;
  if (_storage == nullptr) {
    storage = THWStorage_(newWithSize)(LIBRARY_STATE size);
  } else {
    int64_t _storage_numel = _storage->nbytes() / sizeof(scalar_t);
    THPUtils_assert(
        _storage_numel == size,
        "storage has wrong size: expected %ld got %ld",
        size,
        _storage_numel);
    storage = _storage;
  }

#ifndef THC_GENERIC_FILE
  data = THWStorage_(data)(LIBRARY_STATE storage);
#else
  std::unique_ptr<char[]> cpu_data(new char[size * sizeof(scalar_t)]);
  data = (scalar_t*)cpu_data.get();
#endif

  // fast track for bytes and little endian
  if (sizeof(scalar_t) == 1 ||
      torch::utils::THP_nativeByteOrder() ==
          torch::utils::THPByteOrder::THP_LITTLE_ENDIAN) {
    doRead(file, data, storage->nbytes());
  } else {
    int64_t buffer_size = std::min(size, (int64_t)5000);
    std::unique_ptr<uint8_t[]> le_buffer(new uint8_t[buffer_size * sizeof(scalar_t)]);


    for (int64_t i = 0; i < size; i += buffer_size) {
      size_t to_convert = std::min(size - i, buffer_size);
      doRead(file, le_buffer.get(), sizeof(scalar_t) * to_convert);

      if (sizeof(scalar_t) == 2) {
        torch::utils::THP_decodeInt16Buffer(
            (int16_t*)data + i,
            le_buffer.get(),
            torch::utils::THP_nativeByteOrder(),
            to_convert);
      } else if (sizeof(scalar_t) == 4) {
        torch::utils::THP_decodeInt32Buffer(
            (int32_t*)data + i,
            le_buffer.get(),
            torch::utils::THP_nativeByteOrder(),
            to_convert);
      } else if (sizeof(scalar_t) == 8) {
        torch::utils::THP_decodeInt64Buffer(
            (int64_t*)data + i,
            le_buffer.get(),
            torch::utils::THP_nativeByteOrder(),
            to_convert);
      }
    }
  }

#ifdef THC_GENERIC_FILE
  THCudaCheck(cudaMemcpy(THWStorage_(data)(LIBRARY_STATE storage), data, size * sizeof(scalar_t), cudaMemcpyHostToDevice));
#endif
  return storage.release();
}

template THWStorage* THPStorage_(readFileRaw<int>)(int fd, THWStorage* storage);
template THWStorage* THPStorage_(readFileRaw<PyObject*>)(PyObject* fd, THWStorage* storage);

#endif