File: backend_init.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (239 lines) | stat: -rw-r--r-- 9,176 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#include <torch/csrc/jit/backends/backend_init.h>
#include <torch/csrc/jit/backends/backend_detail.h>
#include <torch/csrc/jit/backends/backend_resolver.h>
#include <torch/csrc/jit/frontend/code_template.h>
#include <torch/csrc/jit/python/pybind_utils.h>

namespace torch {
namespace jit {

void initJitBackendBindings(PyObject* module) {
  // Bind a function for lowering to each JIT backend. The name of the backend
  // must be the first argument. For example, to lower a Module to
  // "example_backend", declared as
  //
  //  static auto cls = torch::jit::backend<ExampleBackend>("example_backend");
  //
  // this function must be called like
  //
  //  torch._C._jit_to_backend("example_backend", module, spec)
  auto codegen_lambda = [=](const std::string& backend_name,
                            const Module& orig_module,
                            const py::dict& method_compile_spec) {
    const c10::QualifiedName qual_backend_name({"__torch__",
                                                "torch",
                                                "classes",
                                                detail::kBackendsNamespace,
                                                backend_name});
    // TODO: Validate method_compile_spec.

    // Clone orig_module to make sure backend transformation is
    // functional.
    auto cloned_module = orig_module.clone();

    // Represents of a Type of Dict[str, Any].
    auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());

    // Generate LoweredModule.
    Module loweredModule(
        "torch.jit." + backend_name + "LoweredModule",
        get_python_cu(),
        /*shouldMangle=*/true);

    // Generate attributes.
    // This is the original cloned and preprocessed module.
    loweredModule.register_attribute(
        "__processed_module",
        AnyType::get(),
        cloned_module._ivalue(),
        /*is_param=*/false);

    // This is for the method_compile_spec passed in to to_<backend> or
    // loaded from an exported model.
    loweredModule.register_attribute(
        "__method_compile_spec",
        any_dict_ty,
        toIValue(method_compile_spec, any_dict_ty).toGenericDict(),
        /*is_param=*/false);

    // This is a pointer to a backend instance that is used to access
    // compile and execute functions.
    auto cls = getCustomClass(qual_backend_name.qualifiedName());
    TORCH_INTERNAL_ASSERT(cls);
    c10::intrusive_ptr<torch::CustomClassHolder> backend;
    loweredModule.register_attribute(
        "__backend", cls, IValue::make_capsule(backend));

    // This is the list of opaque backend handles returned by
    // backend.compile.
    loweredModule.register_attribute(
        "__handles",
        any_dict_ty,
        c10::impl::GenericDict(
            any_dict_ty->getKeyType(), any_dict_ty->getValueType()),
        /*is_param=*/false);

    // Methods.

    // This is a helper function for creating a new instance of the
    // backend class.
    static const auto create_backend_ct = CodeTemplate(R"(
            def __create_backend(self):
                self.__backend = $name()
            )");
    TemplateEnv create_backend_te;
    create_backend_te.s("name", qual_backend_name.qualifiedName());
    loweredModule.define(
        create_backend_ct.format(create_backend_te), loweredModuleResolver());

    // getstate and setstate are for serialization/deserialization of
    // the LoweredModule.
    loweredModule.define(
        R"(
            def __getstate__(self):
                return self.__method_compile_spec, self.__processed_module
            )",
        loweredModuleResolver());

    loweredModule.define(
        R"(
            def __setstate__(self, state):
                self.__method_compile_spec = state[0]
                self.__processed_module = state[1]
                self.__create_backend()
                self.__handles = self.__backend.compile(self.__processed_module, self.__method_compile_spec)
            )",
        loweredModuleResolver());

    // This is never called during compilation or execution, but is
    // needed to generate the LoweredModule because we don't have access
    // to an instance of the backend as a C++ object with which to call
    // preprocess.
    loweredModule.define(
        R"(
            def __preprocess(self, mod: Any, method_compile_spec: Dict[str, Any]):
                self.__create_backend()
                self.__processed_module = self.__backend.preprocess(mod, method_compile_spec)
          )",
        loweredModuleResolver());

    // This loop generates one method on the LoweredModule for every key
    // in method_compile_spec.
    for (auto& e : method_compile_spec) {
      std::string method_name = py::cast<std::string>(e.first);
      static const auto method_ct = CodeTemplate(R"(
            def $method(self${,def_inputs}):
                typed_inputs: List[Any] = [${fwd_inputs,}]
                $ret, = self.__backend.execute(self.__handles["$method"], typed_inputs)
                ${refine,}
                return $ret
            )");

      TemplateEnv method_te;
      method_te.s("method", method_name);
      auto method = orig_module.get_method(method_name);
      auto& function = method.function();
      auto& schema = function.getSchema();

      // Generate the inputs for the function signature (def_inputs) and
      // for passing to backend.execute (fwd_inputs).
      std::vector<std::string> def_inputs, fwd_inputs;
      for (const auto& arg : schema.arguments()) {
        auto name = arg.name();

        // Skip self since that is only and always present in the
        // signature.
        if (name == "self") {
          continue;
        }

        auto default_value = arg.default_value();

        if (arg.kwarg_only()) {
          // If this is a kwarg, it needs to be emitted as keyword=value
          // in the definition and keyword=keyword in the call to
          // backend_execute.
          TORCH_INTERNAL_ASSERT(default_value.has_value());
          std::stringstream def_ss, fwd_ss;
          def_ss << name << "=";
          fwd_ss << name << "=" << name;
          default_value->repr(def_ss, [](std::ostream&, const IValue&) -> bool {
            return false;
          });
          def_inputs.emplace_back(def_ss.str());
          fwd_inputs.emplace_back(fwd_ss.str());
        } else {
          // If this is not a kwarg, it should be emitted as is in the
          // signature and the call to backend_execute.
          def_inputs.emplace_back(name);
          fwd_inputs.emplace_back(name);
        }
      }

      // Generate a comma-delimited list of identifiers to unpack
      // outputs, as well as a list of isinstance checks to make sure
      // the backend returned the types it was supposed to.
      std::stringstream out_ss, type_check_ss;
      std::vector<std::string> type_checks;
      TORCH_INTERNAL_ASSERT(schema.returns().size() == 1);
      auto out_ty = schema.returns().at(0).type();

      out_ss << "_0";
      type_check_ss << "assert isinstance(_0, ";

      if (auto out_tuple_ty = out_ty->cast<TupleType>()) {
        auto tuple_elements = out_tuple_ty->elements();
        type_check_ss << tuple_elements[0]->str() << ")";
        type_checks.emplace_back(type_check_ss.str());
        for (unsigned i = 1, e = tuple_elements.size(); i < e; ++i) {
          type_check_ss.str(std::string());
          type_check_ss.clear();
          out_ss << ", _" << i;
          type_check_ss << "assert isinstance(_" << i << ", "
                        << tuple_elements[i]->str() << ")";
          type_checks.emplace_back(type_check_ss.str());
        }
      } else {
        type_check_ss << out_ty->str() << ")";
        type_checks.emplace_back(type_check_ss.str());
      }

      method_te.v("def_inputs", def_inputs);
      method_te.v("fwd_inputs", fwd_inputs);
      method_te.v("refine", type_checks);
      method_te.s("ret", out_ss.str());

      loweredModule.define(
          method_ct.format(method_te), loweredModuleResolver());
    }

    // Run preprocess so that __processed_module is set correctly before
    // compilation.
    loweredModule.run_method(
        "__preprocess",
        cloned_module._ivalue(),
        toIValue(method_compile_spec, any_dict_ty).toGenericDict());

    // Call __setstate__ to ensure that the returned Module is ready to
    // run.
    auto state = at::ivalue::Tuple::create(
        toIValue(method_compile_spec, any_dict_ty).toGenericDict(),
        loweredModule.attr("__processed_module"));
    loweredModule.run_method("__setstate__", state);
    return loweredModule;
  };
  auto m = py::handle(module).cast<py::module>();
  m.def(
      "_jit_to_backend",
      [=](const std::string& backend_name,
          py::handle orig_module,
          const py::dict& method_compile_spec) {
        return py::module::import("torch.jit._recursive")
            .attr("wrap_cpp_module")(codegen_lambda(
                backend_name,
                py::cast<Module>(orig_module.attr("_c")),
                method_compile_spec));
      });
}
} // namespace jit
} // namespace torch