1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
#include <torch/csrc/jit/backends/backend_init.h>
#include <torch/csrc/jit/backends/backend_detail.h>
#include <torch/csrc/jit/backends/backend_resolver.h>
#include <torch/csrc/jit/frontend/code_template.h>
#include <torch/csrc/jit/python/pybind_utils.h>
namespace torch {
namespace jit {
void initJitBackendBindings(PyObject* module) {
// Bind a function for lowering to each JIT backend. The name of the backend
// must be the first argument. For example, to lower a Module to
// "example_backend", declared as
//
// static auto cls = torch::jit::backend<ExampleBackend>("example_backend");
//
// this function must be called like
//
// torch._C._jit_to_backend("example_backend", module, spec)
auto codegen_lambda = [=](const std::string& backend_name,
const Module& orig_module,
const py::dict& method_compile_spec) {
const c10::QualifiedName qual_backend_name({"__torch__",
"torch",
"classes",
detail::kBackendsNamespace,
backend_name});
// TODO: Validate method_compile_spec.
// Clone orig_module to make sure backend transformation is
// functional.
auto cloned_module = orig_module.clone();
// Represents of a Type of Dict[str, Any].
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
// Generate LoweredModule.
Module loweredModule(
"torch.jit." + backend_name + "LoweredModule",
get_python_cu(),
/*shouldMangle=*/true);
// Generate attributes.
// This is the original cloned and preprocessed module.
loweredModule.register_attribute(
"__processed_module",
AnyType::get(),
cloned_module._ivalue(),
/*is_param=*/false);
// This is for the method_compile_spec passed in to to_<backend> or
// loaded from an exported model.
loweredModule.register_attribute(
"__method_compile_spec",
any_dict_ty,
toIValue(method_compile_spec, any_dict_ty).toGenericDict(),
/*is_param=*/false);
// This is a pointer to a backend instance that is used to access
// compile and execute functions.
auto cls = getCustomClass(qual_backend_name.qualifiedName());
TORCH_INTERNAL_ASSERT(cls);
c10::intrusive_ptr<torch::CustomClassHolder> backend;
loweredModule.register_attribute(
"__backend", cls, IValue::make_capsule(backend));
// This is the list of opaque backend handles returned by
// backend.compile.
loweredModule.register_attribute(
"__handles",
any_dict_ty,
c10::impl::GenericDict(
any_dict_ty->getKeyType(), any_dict_ty->getValueType()),
/*is_param=*/false);
// Methods.
// This is a helper function for creating a new instance of the
// backend class.
static const auto create_backend_ct = CodeTemplate(R"(
def __create_backend(self):
self.__backend = $name()
)");
TemplateEnv create_backend_te;
create_backend_te.s("name", qual_backend_name.qualifiedName());
loweredModule.define(
create_backend_ct.format(create_backend_te), loweredModuleResolver());
// getstate and setstate are for serialization/deserialization of
// the LoweredModule.
loweredModule.define(
R"(
def __getstate__(self):
return self.__method_compile_spec, self.__processed_module
)",
loweredModuleResolver());
loweredModule.define(
R"(
def __setstate__(self, state):
self.__method_compile_spec = state[0]
self.__processed_module = state[1]
self.__create_backend()
self.__handles = self.__backend.compile(self.__processed_module, self.__method_compile_spec)
)",
loweredModuleResolver());
// This is never called during compilation or execution, but is
// needed to generate the LoweredModule because we don't have access
// to an instance of the backend as a C++ object with which to call
// preprocess.
loweredModule.define(
R"(
def __preprocess(self, mod: Any, method_compile_spec: Dict[str, Any]):
self.__create_backend()
self.__processed_module = self.__backend.preprocess(mod, method_compile_spec)
)",
loweredModuleResolver());
// This loop generates one method on the LoweredModule for every key
// in method_compile_spec.
for (auto& e : method_compile_spec) {
std::string method_name = py::cast<std::string>(e.first);
static const auto method_ct = CodeTemplate(R"(
def $method(self${,def_inputs}):
typed_inputs: List[Any] = [${fwd_inputs,}]
$ret, = self.__backend.execute(self.__handles["$method"], typed_inputs)
${refine,}
return $ret
)");
TemplateEnv method_te;
method_te.s("method", method_name);
auto method = orig_module.get_method(method_name);
auto& function = method.function();
auto& schema = function.getSchema();
// Generate the inputs for the function signature (def_inputs) and
// for passing to backend.execute (fwd_inputs).
std::vector<std::string> def_inputs, fwd_inputs;
for (const auto& arg : schema.arguments()) {
auto name = arg.name();
// Skip self since that is only and always present in the
// signature.
if (name == "self") {
continue;
}
auto default_value = arg.default_value();
if (arg.kwarg_only()) {
// If this is a kwarg, it needs to be emitted as keyword=value
// in the definition and keyword=keyword in the call to
// backend_execute.
TORCH_INTERNAL_ASSERT(default_value.has_value());
std::stringstream def_ss, fwd_ss;
def_ss << name << "=";
fwd_ss << name << "=" << name;
default_value->repr(def_ss, [](std::ostream&, const IValue&) -> bool {
return false;
});
def_inputs.emplace_back(def_ss.str());
fwd_inputs.emplace_back(fwd_ss.str());
} else {
// If this is not a kwarg, it should be emitted as is in the
// signature and the call to backend_execute.
def_inputs.emplace_back(name);
fwd_inputs.emplace_back(name);
}
}
// Generate a comma-delimited list of identifiers to unpack
// outputs, as well as a list of isinstance checks to make sure
// the backend returned the types it was supposed to.
std::stringstream out_ss, type_check_ss;
std::vector<std::string> type_checks;
TORCH_INTERNAL_ASSERT(schema.returns().size() == 1);
auto out_ty = schema.returns().at(0).type();
out_ss << "_0";
type_check_ss << "assert isinstance(_0, ";
if (auto out_tuple_ty = out_ty->cast<TupleType>()) {
auto tuple_elements = out_tuple_ty->elements();
type_check_ss << tuple_elements[0]->str() << ")";
type_checks.emplace_back(type_check_ss.str());
for (unsigned i = 1, e = tuple_elements.size(); i < e; ++i) {
type_check_ss.str(std::string());
type_check_ss.clear();
out_ss << ", _" << i;
type_check_ss << "assert isinstance(_" << i << ", "
<< tuple_elements[i]->str() << ")";
type_checks.emplace_back(type_check_ss.str());
}
} else {
type_check_ss << out_ty->str() << ")";
type_checks.emplace_back(type_check_ss.str());
}
method_te.v("def_inputs", def_inputs);
method_te.v("fwd_inputs", fwd_inputs);
method_te.v("refine", type_checks);
method_te.s("ret", out_ss.str());
loweredModule.define(
method_ct.format(method_te), loweredModuleResolver());
}
// Run preprocess so that __processed_module is set correctly before
// compilation.
loweredModule.run_method(
"__preprocess",
cloned_module._ivalue(),
toIValue(method_compile_spec, any_dict_ty).toGenericDict());
// Call __setstate__ to ensure that the returned Module is ready to
// run.
auto state = at::ivalue::Tuple::create(
toIValue(method_compile_spec, any_dict_ty).toGenericDict(),
loweredModule.attr("__processed_module"));
loweredModule.run_method("__setstate__", state);
return loweredModule;
};
auto m = py::handle(module).cast<py::module>();
m.def(
"_jit_to_backend",
[=](const std::string& backend_name,
py::handle orig_module,
const py::dict& method_compile_spec) {
return py::module::import("torch.jit._recursive")
.attr("wrap_cpp_module")(codegen_lambda(
backend_name,
py::cast<Module>(orig_module.attr("_c")),
method_compile_spec));
});
}
} // namespace jit
} // namespace torch
|