File: executor_kernel_arg.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (178 lines) | stat: -rw-r--r-- 4,221 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#pragma once

#include <ATen/core/ivalue.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/ir/ir.h>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

// This should match the tensor used in the code generation (almost exactly)
template <typename T, int N>
struct TensorArgCodegen {
  T& operator[](int64_t ind) {
    return data[ind];
  };

  T* data;
  int64_t size[N];
  int64_t stride[N];
  constexpr int nDims() {
    return N;
  }
  void setSize(int i, int64_t s) {
    size[i] = s;
  }
  void setStride(int i, int64_t s) {
    stride[i] = s;
  }
};

template <typename T>
struct TensorArgCodegen<T, 0> {
  T& operator[](int64_t ind) {
    return data[ind];
  };

  T* data;
  constexpr int nDims() {
    return 0;
  }
  void setSize(int, int64_t) {
    TORCH_INTERNAL_ASSERT(false, "Tried to set size of a 0-dim tensor");
  }
  void setStride(int, int64_t) {
    TORCH_INTERNAL_ASSERT(false, "Tried to set stride of a 0-dim tensor");
  }
};

struct ArgAbstract {
  virtual ~ArgAbstract() {}
  virtual void* arg() = 0;
};

struct ULongArg : public ArgAbstract {
  uint64_t val_;
  ULongArg(uint64_t _val) : val_(_val){};
  void* arg() {
    return &val_;
  }
};

struct LongArg : public ArgAbstract {
  int64_t val_;
  LongArg(int64_t _val) : val_(_val){};
  void* arg() {
    return &val_;
  }
};

struct IntArg : public ArgAbstract {
  int val_;
  IntArg(int _val) : val_(_val){};
  void* arg() {
    return &val_;
  }
};

struct FloatArg : public ArgAbstract {
  float val_;
  FloatArg(float _val) : val_(_val){};
  void* arg() {
    return &val_;
  }
};

struct TensorArgAbstract : ArgAbstract {
  virtual ~TensorArgAbstract(){};
  virtual void setSize(int i, int64_t size) = 0;
  virtual void setStride(int i, int64_t stride) = 0;
  virtual void setPointer(void* ptr) = 0;
};

// This should match the tensor used in the code generation (almost exactly)
template <typename TENSOR_TYPE>
struct TensorArg : public TensorArgAbstract {
  TENSOR_TYPE instance_;

  void setSize(int i, int64_t size) override {
    instance_.setSize(i, size);
  }
  void setStride(int i, int64_t stride) override {
    instance_.setStride(i, stride);
  }
  void setPointer(void* ptr) override {
    instance_.data = static_cast<decltype(TENSOR_TYPE::data)>(ptr);
  }

  void* arg() override {
    return &instance_;
  }
};

template <typename T>
std::unique_ptr<TensorArgAbstract> getTensorArg(int nDims) {
  switch (nDims) {
    case (0):
      return std::make_unique<TensorArg<TensorArgCodegen<T, 0>>>();
    case (1):
      return std::make_unique<TensorArg<TensorArgCodegen<T, 1>>>();
    case (2):
      return std::make_unique<TensorArg<TensorArgCodegen<T, 2>>>();
    case (3):
      return std::make_unique<TensorArg<TensorArgCodegen<T, 3>>>();
    case (4):
      return std::make_unique<TensorArg<TensorArgCodegen<T, 4>>>();
    case (5):
      return std::make_unique<TensorArg<TensorArgCodegen<T, 5>>>();
    case (6):
      return std::make_unique<TensorArg<TensorArgCodegen<T, 6>>>();
    case (7):
      return std::make_unique<TensorArg<TensorArgCodegen<T, 7>>>();
    case (8):
      return std::make_unique<TensorArg<TensorArgCodegen<T, 8>>>();
    default:
      TORCH_INTERNAL_ASSERT(
          false,
          "Tried to gerneate a tensor to run a generated kernel with ",
          nDims,
          " dimensions, however it must be a 1-8 dimensional tensor.");
  }
}

std::unique_ptr<TensorArgAbstract> getTensorArg(
    c10::ScalarType dtype,
    int nDims);

class KernelArgumentHolder {
 public:
  // Push a tensor to the arguments
  void push(const at::Tensor& tensor);

  // Push a scalar or integer to the arguments
  void push(const IValue& val);

  void push(const uint64_t& val);

  // Create buffer, flatten arguments into it, align by 8 Bytes, return pointers
  // in the buffer
  void** getBuffer();

  void push(const c10::ArrayRef<c10::IValue>& args);

  void push(const std::vector<at::Tensor>& tensors);

  void appendPhiloxRNGSeed(uint64_t rand_offset);

 private:
  std::vector<std::unique_ptr<ArgAbstract>> arguments_;
  std::vector<void*> void_ptrs_;
  bool changed_ = true;
};

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch