1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
|
#include <torch/csrc/jit/passes/cuda_graph_fuser.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/interface.h>
#include <torch/csrc/jit/codegen/cuda/partition.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/pass_manager.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/autodiff.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <queue>
#include <unordered_map>
namespace torch {
namespace jit {
namespace fuser {
namespace cuda {
constexpr size_t NVRTC_KERNEL_ARG_LIMIT = 128;
namespace {
Value* broadcastSizes(at::ArrayRef<Value*> sizes) {
AT_ASSERT(!sizes.empty());
Graph* graph = sizes[0]->owningGraph();
Node* broadcast_n =
graph->insertNode(graph->create(prim::BroadcastSizes, sizes));
broadcast_n->output()->setType(ListType::ofInts());
return broadcast_n->output();
}
struct CudaGraphFuser {
using FusionCallback = std::function<bool(Node*)>;
Block* block_;
std::unique_ptr<AliasDb> aliasDb_;
std::shared_ptr<Graph> graph_;
Symbol kind_ = prim::CudaFusionGroup;
// nvrtc has a limit on the number of arguments allowed in a CUDA kernel.
// The specific limit is a function of constant memory size, amount available
// to pass arguments, and some implementation dependence. Select a safe
// limit here.
// This limit is also applied to other devices in the fuser by default.
// Change with setInputArgLimit
size_t subgraph_arg_limit_ = NVRTC_KERNEL_ARG_LIMIT;
CudaGraphFuser(Block* block, std::shared_ptr<Graph> graph)
: block_(block), graph_(std::move(graph)) {}
void setInputArgLimit(size_t limit) {
subgraph_arg_limit_ = limit;
}
value_list tensorInputs(Node* node) {
return filter(node->inputs(), [](Value* v) {
return v->type()->isSubtypeOf(TensorType::get());
});
}
bool calculatesSize(Node* node) {
return node->matches("aten::size(Tensor self) -> int[]");
}
bool allUsersAreThisConsumerOrCalcSizes(Node* consumer, Value* producer) {
auto defining_node = producer->node();
for (auto o : defining_node->outputs()) {
for (auto u : o->uses()) {
if (u.user != consumer && !calculatesSize(u.user))
return false;
}
}
return true;
}
Graph& getSubgraph(Node* n) {
AT_ASSERT(n->kind() == kind_);
return *n->g(attr::Subgraph);
}
void mergeFusionGroups(Node* consumer_group, Node* producer_group) {
// Now we have two fusion groups!
// Revert the fusion - place all inner nodes of producer back in the outer
// graph.
std::vector<Node*> temporary_nodes;
auto producer_subgraph = &getSubgraph(producer_group);
// Initialize a map of inner graph values to outer graph values
std::unordered_map<Value*, Value*> inner_to_outer;
auto inner_inputs = producer_subgraph->inputs();
auto outer_inputs = producer_group->inputs();
for (size_t i = 0; i < inner_inputs.size(); ++i) {
inner_to_outer[inner_inputs[i]] = outer_inputs[i];
}
// Clone all nodes
for (auto inner : producer_subgraph->nodes()) {
Node* outer = block_->owningGraph()->createClone(
inner, [&](Value* k) -> Value* { return inner_to_outer.at(k); });
outer->insertBefore(producer_group);
temporary_nodes.emplace_back(outer);
auto inner_outputs = inner->outputs();
auto outer_outputs = outer->outputs();
for (size_t i = 0; i < inner_outputs.size(); ++i)
inner_to_outer[inner_outputs[i]] = outer_outputs[i];
}
// Replace uses of producer_group outputs and destroy the producer
auto subgraph_outputs = producer_subgraph->outputs();
for (size_t i = 0; i < subgraph_outputs.size(); ++i) {
auto outer_output = inner_to_outer.at(subgraph_outputs[i]);
producer_group->outputs()[i]->replaceAllUsesWith(outer_output);
}
producer_group->destroy();
producer_group =
nullptr; // Just to get a clear error in case someone uses it
// Inline the temporary nodes into the first group
auto consumer_subgraph = &getSubgraph(consumer_group);
for (auto it = temporary_nodes.rbegin(); it != temporary_nodes.rend();
++it) {
Node* node = *it;
Node* merged = mergeNodeIntoGroup(consumer_group, node);
// If any of the outputs are still used then we need to add them
auto outputs = node->outputs();
for (size_t i = 0; i < outputs.size(); ++i) {
auto output = outputs[i];
if (output->uses().size() == 0)
continue;
consumer_subgraph->registerOutput(merged->outputs()[i]);
auto new_output = consumer_group->addOutput();
output->replaceAllUsesWith(new_output);
new_output->setType(output->type());
}
node->destroy();
}
}
// insert a producer node into a consuming fusion group.
// DOES NOT WORK if n is a consumer of an output of the fusion group
// returns the node _inside_ the group that represents the node
Node* mergeNodeIntoGroup(Node* group, Node* n) {
AT_ASSERT(n->kind() != kind_);
auto& subgraph = getSubgraph(group);
// map from nodes in the surrounding graph to parameters in the fusion
// group's subgraph that correspond to them
std::unordered_map<Value*, Value*> inputs_map;
size_t i = 0;
size_t tensor_insert_idx = 0;
AT_ASSERT(group->inputs().size() == subgraph.inputs().size());
for (auto input : group->inputs()) {
inputs_map[input] = subgraph.inputs()[i++];
if (input->type()->isSubtypeOf(TensorType::get()))
tensor_insert_idx = i;
}
// add n's inputs to the fusion group's input list if we don't already have
// them
// we insert tensors first because the fuser assumes that to be the case
// (as a legacy from tensors only)
WithInsertPoint guard(*subgraph.nodes().begin());
for (auto input : n->inputs()) {
if (inputs_map.count(input) == 0) {
// TODO: we are following the convention for no good reason;
// we don't need tensor to come before any other inputs.
if (input->type()->isSubtypeOf(TensorType::get())) {
auto in_group = subgraph.insertInput(tensor_insert_idx);
in_group->setType(input->type());
inputs_map[input] = in_group;
group->insertInput(tensor_insert_idx, input);
tensor_insert_idx++;
} else if (
// TODO: extend the supporting inputs here.
(input->type()->isSubtypeOf(FloatType::get()) &&
input->node()->kind() != prim::Constant) ||
(n->kind() == aten::_grad_sum_to_size &&
input->type()->isSubtypeOf(ListType::ofInts()))) {
auto in_group = subgraph.addInput();
in_group->setType(input->type());
inputs_map[input] = in_group;
group->addInput(input);
} else if (input->node()->kind() == prim::Constant) {
// inline the constants directly in the body of the fused group.
Node* in_const =
subgraph.createClone(input->node(), [](Value*) -> Value* {
throw std::runtime_error("unexpected input");
});
subgraph.insertNode(in_const);
inputs_map[input] = in_const->output();
} else {
// TODO: we need to figure out what are supported input scalar
auto in_group = subgraph.addInput();
in_group->setType(input->type());
inputs_map[input] = in_group;
group->addInput(input);
}
}
}
// copy n into the graph, remapping its inputs to internal nodes
Node* in_graph = subgraph.createClone(
n, [&](Value* k) -> Value* { return inputs_map[k]; });
// if n's outputs are already inputs to the fusion group,
// we need to remove them because n is now inside the fusion group.
//
// i.e.,
// x = f(w); group(x, y, z) becomes group(w, y, z).
// x, y, z = f(w); group(x, y, z) becomes group(w).
//
// remapping nodes that used the input to the newly-merged node
// n is not an input when the fusion group is empty
auto inputs = group->inputs();
for (size_t i = 0; i < n->outputs().size(); ++i) {
auto it = std::find(inputs.begin(), inputs.end(), n->outputs()[i]);
if (it != inputs.end()) {
size_t p = it - inputs.begin();
group->removeInput(p);
subgraph.inputs()[p]->replaceAllUsesWith(in_graph->outputs()[i]);
subgraph.eraseInput(p);
}
}
return subgraph.insertNode(in_graph);
}
// turn consumer node n into a fusion group with just n inside
// to prepare for fusion and replace uses of n with the new group
Node* createSingletonFusionGroup(Node* n) {
auto group = block_->owningGraph()->createWithSubgraph(kind_);
// propogate position information for the new node so we can always
// have a valid mapping
group->insertBefore(n);
Node* mergedNode = mergeNodeIntoGroup(group, n);
getSubgraph(group).registerOutput(mergedNode->output());
auto sel = group->addOutput();
sel->copyMetadata(n->output());
n->replaceAllUsesWith(group);
n->destroy();
return group;
}
at::optional<Node*> tryFuse(Node* consumer, Value* producer) {
// this handles cases where producer can be moved _into_ the fusion group of
// consumer.
// TODO: extend to fusion of consumer into _producer's_ fusion blob
// if the consumer allInputsAreThisProducer(consumer,producer)
// we can move the consumer up into the producer.
// but this requires better handling of merging fusion groups so it is not
// done now
bool shouldFuse =
fuser::cuda::isFusableCudaFusionGroup(consumer, producer->node()) &&
// Rearrange nodes such that all uses of producer are after the
// consumer. Fusion will rewrite those later uses to use the version of
// producer generated by the fused blob. In this case, producer becomes
// an output of the fusion group.
aliasDb_->moveBeforeTopologicallyValid(producer->node(), consumer);
if (!shouldFuse) {
return at::nullopt;
}
if ((consumer->inputs().size() + consumer->outputs().size() +
producer->node()->inputs().size() +
producer->node()->outputs().size()) > subgraph_arg_limit_) {
return at::nullopt;
}
auto group = consumer;
if (consumer->kind() != kind_) {
group = createSingletonFusionGroup(consumer);
}
if (producer->node()->kind() == kind_) {
mergeFusionGroups(group, producer->node());
return group;
}
AT_ASSERT(producer->node()->outputs().size() == 1);
Node* merged = mergeNodeIntoGroup(group, producer->node());
// remaining uses of this producer can occur because we allow
// fusion in cases where uses remain after the consumer
// if these exist, re-route them to the version of producer
// created in FusionGroup
if (producer->uses().size() != 0) {
getSubgraph(group).registerOutput(merged->output());
Value* new_producer = group->addOutput();
new_producer->copyMetadata(producer);
producer->replaceAllUsesWith(new_producer);
}
producer->node()->destroy();
return group;
}
c10::optional<Node*> findFusedChunk(Node* group, Value* input) {
AT_ASSERT(group->kind() == kind_);
auto it = std::find(group->inputs().begin(), group->inputs().end(), input);
if (it == group->inputs().end()) {
return c10::nullopt;
}
size_t input_index = it - group->inputs().begin();
auto& subgraph = getSubgraph(group);
auto* subgraph_input = subgraph.inputs().at(input_index);
// If subgraph_input is an input to prim::ConstantChunk, it will have 1 use
auto* node = subgraph_input->uses().at(0).user;
if (node->kind() == prim::ConstantChunk) {
AT_ASSERT(subgraph_input->uses().size() == 1);
return node;
}
return c10::nullopt;
}
void fuseChunkByReusingExistingFusedChunk(
Node* group,
Node* chunk,
Node* existingFusedChunk) {
if (chunk->outputs().size() != existingFusedChunk->outputs().size()) {
return;
}
auto& subgraph = getSubgraph(group);
for (size_t i = 0; i < chunk->outputs().size(); ++i) {
// Find the input to the FusionGroup (group)
auto* replacement_val = existingFusedChunk->outputs().at(i);
auto* val = chunk->outputs().at(i);
auto it = std::find(group->inputs().begin(), group->inputs().end(), val);
auto input_index = it - group->inputs().begin();
// Rewrite the graph to use replacement_val
auto group_input = subgraph.inputs().at(input_index);
group_input->replaceAllUsesWith(replacement_val);
// Remove the input, it's no longer needed
group->removeInput(input_index);
subgraph.eraseInput(input_index);
}
chunk->destroy();
}
value_list sortReverseTopological(ArrayRef<Value*> inputs) {
value_list result;
for (auto i : inputs) {
if (i->node()->owningBlock() == block_) {
result.push_back(i);
}
}
// Sort in reverse topological order
std::sort(result.begin(), result.end(), [&](Value* a, Value* b) {
return a->node()->isAfter(b->node());
});
return result;
}
at::ArrayRef<Value*> broadcast_tensors(value_list inputs) {
AT_ASSERT(inputs.size() > 0);
auto* g = inputs[0]->owningGraph();
auto* input_list =
g->insertNode(g->createList(TensorType::get(), inputs))->output();
auto* output_list = g->insert(aten::broadcast_tensors, {input_list});
auto* unpack_node = g->insertNode(
g->create(prim::ListUnpack, {output_list}, inputs.size()));
return unpack_node->outputs();
}
void insertExplicitBroadcast(Node* node) {
WithInsertPoint insert_guard{node};
auto tensors = tensorInputs(node);
auto new_tensors = broadcast_tensors(tensors);
// Replace tensors inputs with broadcasted values
auto new_tensors_it = new_tensors.begin();
for (size_t i = 0; i < node->inputs().size(); ++i) {
if (node->inputs()[i]->type()->isSubtypeOf(TensorType::get())) {
AT_ASSERT(new_tensors_it != new_tensors.end());
node->replaceInput(i, *(new_tensors_it++));
}
}
}
Node* promoteChunkToBroadcastingChunk(Node* chunk) {
AT_ASSERT(chunk->kind() == prim::ConstantChunk);
size_t nchunks = chunk->i(attr::chunks);
Node* bchunk =
chunk->owningGraph()->create(prim::BroadcastingChunk, nchunks);
bchunk->addInput(chunk->input());
for (size_t i = 0; i < nchunks; ++i) {
auto* old_output = chunk->outputs().at(i);
auto* new_output = bchunk->outputs().at(i);
new_output->copyMetadata(old_output);
old_output->replaceAllUsesWith(new_output);
}
bchunk->copyAttributes(*chunk);
bchunk->insertAfter(chunk);
chunk->destroy();
return bchunk;
}
// in places where op can be fused into a consumer but chunk is in the way
// distribute chunk to op's operands:
// replace a,b = chunk(op(x,y,z)) with:
// x', y', z' = broadcast_tensors([x, y, z])
// x0,x1 = chunk(x') (x0 has a's type, x1 has b's type)
// y0,y1 = chunk(y') (y0 has a's type, y1 has b's type)
// z0,z1 = chunk(z') (z0 has a's type, z1 has b's type)
// a = op(x0,y0,z0) (a,b have their same size but are now contiguous)
// b = op(x1,y1,x1)
//
// The graph fuser uses an intermediate prim::BroadcastingChunk node to
// represent this behavior concisely. BroadcastingChunk(x, y, z) broadcasts
// all of its inputs and then chunks each input, in order, the same way.
// The above graph is equivalent to:
// x0, x1, y0, y1, z0, z1 = BroadcastingChunk(x, y, z)
// a = op(x0,y0,z0)
// b = op(x1,y1,x1)
//
// NB: The explicit broadcast is important for correctness.
// Let's say we have:
// %z = aten::mul(%x, %y)
// %z.1, %z.2 = aten::chunk(%z, ...)
// ... = prim::CudaFusionGroup(%z.1, %z.2, ...)
// It's possible that %x and %y do not have the same size as %z and
// need to be expanded first so that they can be chunked like %z
//
// NB: Chunk motion only occurs with fusable consumers, which implies
// that there is always some other operation, e.g., a+b, that happens
// after the chunk, and will be put into the fusion group. This is
// important, because distributing the chunk changes the contiguity
// of a and b, and so the results would be invalid, except that we know
// that simple_mappable operations will restore contiguity before
// we exit the fusion group.
//
// NB: The intermediate BroadcastingChunk is important for moving chunks past
// more than one operation: the graph fuser is not able to easily move
// operations around broadcast_tensors + chunk nodes. Let f, g, h be fusable
// ops
// x = f(v, w)
// z = g(x, y)
// a, b = chunk(z)
// c = h(a, b)
// becomes (with the broadcast_tensors + chunk approach):
// x = f(v, w)
// x', y' = broadcast_tensors([x, y])
// ax, bx = chunk(x')
// ay, by = chunk(y')
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
// The broadcast_tensors node makes it harder to move f into the resulting
// FusionGroup of g, g, and h. Keeping the broadcasting and chunk behavior
// together results in:
// x = f(v, w)
// ax, bx, ay, by = BroadcastingChunk(x, y)
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
// making it easier to move f after the BroadcastingChunk:
// ay, by, av, bv, aw, bw = BroadcastingChunk(y, v, w)
// ax = f(av, aw)
// by = f(bv, bw)
// a = g(ax, ay)
// b = g(bx, by)
// c = h(a, b)
bool tryToMoveChunk(Node* consumer, Value* producer) {
// is the output from a chunk/bchunk node?
auto* chunk = producer->node();
if (chunk->kind() != prim::ConstantChunk &&
chunk->kind() != prim::BroadcastingChunk)
return false;
// try to find a producer to move after the chunk/bchunk. The producer must
// be fusable into the consumer.
auto it = std::find_if(
chunk->inputs().begin(),
chunk->inputs().end(),
[&](Value* producer_for_chunk) {
return fuser::cuda::isFusableCudaFusionGroup(
consumer, producer_for_chunk->node()) &&
allUsersAreThisConsumerOrCalcSizes(chunk, producer_for_chunk);
});
if (it == chunk->inputs().end()) {
return false;
}
Value* producer_for_chunk = *it;
size_t producer_index = it - chunk->inputs().begin();
// all uses of the chunk must be in in this consumer
for (auto s : chunk->outputs()) {
for (auto u : s->uses()) {
if (u.user != consumer)
return false;
}
}
// multiple return operators
Node* producer_for_chunk_node = producer_for_chunk->node();
AT_ASSERT(producer_for_chunk_node->outputs().size() == 1);
// Convert chunk to bchunk, if it isn't one already. The bchunk represents a
// broadcast and one or more chunk operations.
auto* bchunk = chunk;
if (chunk->kind() == prim::ConstantChunk) {
bchunk = promoteChunkToBroadcastingChunk(chunk);
}
size_t nchunks = bchunk->i(attr::chunks);
WithInsertPoint guard(bchunk->next());
std::vector<Value*> producer_chunk_outputs;
for (size_t i = 0; i < nchunks; i++) {
producer_chunk_outputs.push_back(
bchunk->output(nchunks * producer_index + i));
}
// Add each of op's operands to the bchunk node.
// chunked_inputs[input_nr][chunk_output_idx]
// = Node* for chunk_output_idx'th output of the chunk(inputs[input_nr])
std::vector<std::vector<Value*>> chunked_inputs;
for (auto input : producer_for_chunk_node->inputs()) {
// XXX: we only work with pointwise ops in here, so we know it is valid to
// push the concat only through tensor arguments (and all other args can
// be safely ignored).
if (!input->type()->isSubtypeOf(TensorType::get()))
continue;
// if 'input' is already an input to the bchunk, reuse it.
auto bchunk_inputs = bchunk->inputs();
auto it = std::find(bchunk_inputs.begin(), bchunk_inputs.end(), input);
if (it != bchunk_inputs.end()) {
chunked_inputs.emplace_back();
auto input_index = std::distance(bchunk_inputs.begin(), it);
for (size_t chunk = 0; chunk < nchunks; ++chunk) {
chunked_inputs.back().push_back(
bchunk->outputs().at(nchunks * input_index + chunk));
}
continue;
}
// NB: I decided not to use cloneFrom here, because if we make cloneFrom
// copy selects one day, it is definitely not what you want here (selects
// have different types).
// TODO: Perhaps we should use cloneFrom now, as it seems unlikely
// to copy select nodes now that we have refactored to have a Value
// distinct from Node.
bchunk->addInput(input);
chunked_inputs.emplace_back(); // alas, to not be C++17
for (auto chunk_sel : producer_chunk_outputs) {
Value* input_chunk_sel = bchunk->addOutput();
input_chunk_sel->setType(chunk_sel->type());
chunked_inputs.back().push_back(input_chunk_sel);
}
}
// apply the op to each chunk of the chunked operands,
// and then rewrite the graph to use them!
for (auto chunk_sel : producer_chunk_outputs) {
auto original_inputs = producer_for_chunk_node->inputs();
Node* chunked_op =
block_->owningGraph()->create(producer_for_chunk_node->kind());
chunked_op->copyAttributes(*producer_for_chunk_node);
chunked_op->output()->setType(chunk_sel->type());
auto chunked_inputs_it = chunked_inputs.begin();
for (Value* original_input : original_inputs) {
if (original_input->type()->isSubtypeOf(TensorType::get())) {
AT_ASSERT(chunked_inputs_it != chunked_inputs.end());
chunked_op->addInput(
chunked_inputs_it->at(chunk_sel->offset() % nchunks));
++chunked_inputs_it;
} else {
chunked_op->addInput(original_input);
}
}
bchunk->owningGraph()->insertNode(chunked_op);
chunk_sel->replaceAllUsesWith(chunked_op->output());
}
bchunk->removeInput(producer_index);
for (size_t i = 0; i < nchunks; i++) {
bchunk->eraseOutput(nchunks * producer_index);
}
// The output of producer_for_chunk_node could have been used in some
// aten::size operators, so we need to clean those up as well (we simply
// broadcast all its tensor inputs).
// We need to insert these early in the graph, i.e. immediately after
// the producer_for_chunk_node as we will have the _size_if_not_same
// that may be before the bchunk.
WithInsertPoint guard2(producer_for_chunk_node);
auto size_calc_uses = producer_for_chunk_node->output()->uses();
if (!size_calc_uses.empty()) {
auto tensor_inputs = filter(
producer_for_chunk_node->inputs(),
[](Value* v) { return v->type()->isSubtypeOf(TensorType::get()); });
auto tensor_sizes = fmap(tensor_inputs, [](Value* v) {
return v->owningGraph()->insert(aten::size, {v});
});
AT_ASSERT(!tensor_sizes.empty());
Value* output_size = tensor_sizes.size() == 1
? tensor_sizes[0]
: broadcastSizes(tensor_sizes);
for (Use u : size_calc_uses) {
u.user->output()->replaceAllUsesWith(output_size);
u.user->destroy();
}
}
producer_for_chunk_node->destroy();
return true;
}
// returns where to continue scanning, and whether any fusion was made
std::pair<graph_node_list::iterator, bool> scanNode(Node* consumer) {
if (fuser::cuda::isFusableCudaFusionGroup(consumer)) {
// handle inputs in reverse topological order as well...
// otherwise in f(a,a+b) it will appear a is used twice if we consider
// the f-a fusion before the f-(a+b) fusion first.
auto inputs = sortReverseTopological(consumer->inputs());
for (auto producer : inputs) {
if (tryToMoveChunk(consumer, producer)) {
// the chunk before this consumer was re-arranged to allow fusion,
// we scan this consumer again to perform the fusion
return std::make_pair(consumer->reverseIterator(), true);
}
auto fusion_group = tryFuse(consumer, producer);
if (fusion_group) {
// after fusion, consumer moves into a FusionGroup, so inputs is no
// longer valid so we rescan the new FusionGroup for more fusions...
return std::make_pair(fusion_group.value()->reverseIterator(), true);
}
}
}
return std::make_pair(++consumer->reverseIterator(), false);
}
void replaceIntermediateBroadcastingChunks() {
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
auto* node = *it;
++it; // We might delete node, so increment the iterator now.
if (node->kind() != prim::BroadcastingChunk) {
continue;
}
auto* bchunk = node;
insertExplicitBroadcast(bchunk);
auto* graph = block_->owningGraph();
size_t nchunks = bchunk->i(attr::chunks);
WithInsertPoint guard(bchunk->next());
// Split the bchunk into bchunks.inputs().size() number of chunk nodes.
for (size_t input_offset = 0; input_offset < bchunk->inputs().size();
input_offset++) {
auto* input = bchunk->inputs().at(input_offset);
Node* new_chunk =
graph->insertNode(graph->create(prim::ConstantChunk, input, 0));
new_chunk->copyAttributes(*bchunk);
for (size_t output_offset = 0; output_offset < nchunks;
output_offset++) {
auto new_output = new_chunk->addOutput();
auto old_output =
bchunk->outputs().at(input_offset * nchunks + output_offset);
new_output->copyMetadata(old_output);
old_output->replaceAllUsesWith(new_output);
}
}
bchunk->destroy();
}
}
bool usedOnlyInSize(Value* v) {
const auto& uses = v->uses();
return std::all_of(uses.begin(), uses.end(), [](const Use& u) {
return u.user->matches("aten::size(Tensor self) -> int[]");
});
}
// Builds up expressions that compute shapes of all intermediates (and
// outputs) of the fusion group, based on the sizes of inputs. You should run
// DCE to remove those that you end up not using.
/*
std::unordered_map<Value*, Value*> buildShapeExpressions(Node* fusion_group) {
WithInsertPoint insert_guard{fusion_group->next()};
std::unordered_map<Value*, Value*> shape_of;
Graph* graph = fusion_group->owningGraph();
auto subgraph = fusion_group->g(attr::Subgraph);
auto inputs = fusion_group->inputs();
auto sinputs = subgraph->inputs();
AT_ASSERT(inputs.size() == sinputs.size());
for (size_t i = 0; i < inputs.size(); ++i) {
if (inputs[i]->type()->isSubtypeOf(TensorType::get())) {
shape_of[sinputs[i]] = graph->insert(aten::size, {inputs[i]});
}
}
// When we have a guarantee that an output won't be removed, because it's
// used in expressions that don't involve size checks, we can use its size
// instead of computing a long chain of broadcasts, starting from the
// beginning of the kernel.
auto outputs = fusion_group->outputs();
auto soutputs = subgraph->outputs();
AT_ASSERT(outputs.size() == soutputs.size());
for (size_t i = 0; i < outputs.size(); ++i) {
if (usedOnlyInSize(outputs[i]))
continue;
shape_of[soutputs[i]] = graph->insert(aten::size, {outputs[i]});
}
for (Node* n : subgraph->nodes()) {
// XXX: Use of shape_of.emplace is crucial to the output shape
// optimization!
if (n->kind() == prim::FusedConcat) {
// This is a bit more involved, because we have to account for the case
// when inputs have different shapes, but fortunately those tensors are
// always outputs, and so we can simply avoid replacing their queries,
// because it won't help us.
continue;
}
if (n->kind() == prim::Constant) {
continue;
}
if (n->kind() == prim::ConstantChunk) {
Node* sizes_node = graph->insertNode(
graph->create(prim::ChunkSizes, shape_of.at(n->input()), 2));
sizes_node->i_(attr::dim, n->i(attr::dim));
sizes_node->i_(attr::chunks, n->i(attr::chunks));
Value* regular_size = sizes_node->outputs().at(0);
Value* last_size = sizes_node->outputs().at(1);
regular_size->setType(ListType::ofInts());
last_size->setType(ListType::ofInts());
auto outputs = n->outputs();
for (Value* o : outputs.slice(0, outputs.size() - 1)) {
shape_of.emplace(o, regular_size);
}
shape_of.emplace(outputs.at(outputs.size() - 1), last_size);
continue;
}
auto tensor_inputs = filter(n->inputs(), [](Value* v) {
return v->type()->isSubtypeOf(TensorType::get());
});
auto shapes =
fmap(tensor_inputs, [&](Value* v) { return shape_of.at(v); });
AT_ASSERT(!shapes.empty());
shape_of.emplace(
n->output(), shapes.size() == 1 ? shapes[0] : broadcastSizes(shapes));
}
return shape_of;
}
void removeOutputsUsedOnlyInSize(Node* fusion_group) {
if (fusion_group->kind() != prim::CudaFusionGroup)
return;
auto subgraph = fusion_group->g(attr::Subgraph);
auto shape_of = buildShapeExpressions(fusion_group);
auto outputs = fusion_group->outputs().vec();
auto soutputs = subgraph->outputs().vec();
// XXX: Iterating in this order is not only good for performance reasons!
// It is also crucial for correctness (i has to reflect the current true
// index of outputs[i])!
for (int64_t i = static_cast<int64_t>(outputs.size()) - 1; i >= 0; --i) {
auto output = outputs[i];
auto soutput = soutputs[i];
if (usedOnlyInSize(output) && shape_of.count(soutput) > 0) {
auto uses = output->uses();
for (Use u : uses) {
AT_ASSERT(u.user->matches("aten::size(Tensor self) -> int[]"));
u.user->output()->replaceAllUsesWith(shape_of.at(soutput));
u.user->destroy();
}
fusion_group->eraseOutput(i);
subgraph->eraseOutput(i);
}
}
}
*/
void refreshAliasDb() {
aliasDb_ = torch::make_unique<AliasDb>(graph_);
}
void optimizeFusedGraphs() {
for (Node* node : block_->nodes()) {
if (node->kind() != kind_) {
continue;
}
auto subgraph = node->g(attr::Subgraph);
EliminateDeadCode(subgraph);
EliminateCommonSubexpression(subgraph);
ConstantPooling(subgraph);
}
}
void run() {
// Run the pass until no changes are made.
// This is necessary, because the algorithm can miss out on certain fusion
// opportunities if ran only once. Consider this graph:
//
// %1 = f(...)
// %2 = g(%1)
// %3 = h(%1)
// %4 = l(%3)
// return (%4, %2)
//
// where f, g, h, l are simple map ops.
// The first iteration will fuse %4 and %3, and see that %1 is an input, but
// can't be fused, because it has a different use before the fusion group
// in our topological ordering. Then, %2 will be considered, and fused with
// %1. If we do another iteration, the algorithm will consider the fusion of
// these two groups and fix the situation.
bool any_changed = true;
while (any_changed) {
any_changed = false;
refreshAliasDb();
for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
bool changed;
std::tie(it, changed) = scanNode(*it);
any_changed |= changed;
}
}
refreshAliasDb();
// fuseConcats();
optimizeFusedGraphs();
// The graph fuser can add intermediate prim::BroadcastingChunk nodes.
// Replace them with broadcasts + chunks.
replaceIntermediateBroadcastingChunks();
// Fuse starting chunks into the group.
// for (auto it = block_->nodes().rbegin(); it != block_->nodes().rend();) {
// it = scanNodeForChunks(*it);
//}
// Remove outputs that have been added only because we need their size
// for (Node* n : block_->nodes()) {
// removeOutputsUsedOnlyInSize(n);
//}
for (Node* node : block_->nodes()) {
for (Block* sub_block : node->blocks()) {
CudaGraphFuser(sub_block, graph_).run();
}
}
}
};
void compileFusionRecursive(Block* block) {
FUSER_PERF_SCOPE("compileFusionRecursive");
for (auto node : block->nodes()) {
if (node->kind() == prim::CudaFusionGroup) {
fuser::cuda::compileFusionGroup(node);
}
for (auto sub_block : node->blocks()) {
compileFusionRecursive(sub_block);
}
}
}
void PeepholeOptimizeShapeExpressions(Block* block) {
FUSER_PERF_SCOPE("PeepholeOptimizeShapeExpressions");
auto nodes = block->nodes();
for (auto it = nodes.begin(); it != nodes.end(); ++it) {
Node* node = *it;
for (Block* subblock : node->blocks()) {
PeepholeOptimizeShapeExpressions(subblock);
}
if (node->kind() == prim::BroadcastSizes) {
// Remove no-op broadcasts.
if (node->inputs().size() == 1) {
node->output()->replaceAllUsesWith(node->input());
it.destroyCurrent();
continue;
}
// Deduplicate inputs, but use their unique() values to ensure
// this process only depends on the graph.
std::map<size_t, Value*> unique_to_value;
for (Value* input : node->inputs()) {
unique_to_value.emplace(input->unique(), input);
}
if (unique_to_value.size() != node->inputs().size()) {
std::vector<Value*> inputs;
inputs.reserve(unique_to_value.size());
for (auto& entry : unique_to_value) {
inputs.push_back(entry.second);
}
if (inputs.size() == 1) {
node->output()->replaceAllUsesWith(inputs[0]);
} else {
WithInsertPoint insert_guard{node};
node->output()->replaceAllUsesWith(broadcastSizes(inputs));
}
it.destroyCurrent();
--it; // Revisit the node with deduplicated inputs
continue;
}
// Remove compose simple chains of broadcasts into a single node.
const auto& uses = node->output()->uses();
if (uses.size() == 1 && uses[0].user->kind() == prim::BroadcastSizes) {
Node* user = uses[0].user;
user->removeInput(uses[0].offset);
// NB: we don't care about deduplication in here, as we will visit user
// later.
for (Value* i : node->inputs()) {
user->addInput(i);
}
it.destroyCurrent();
}
}
}
}
} // anonymous namespace
void CudaFuseGraph(std::shared_ptr<Graph>& graph) {
FUSER_PERF_SCOPE("CudaFuseGraph");
CudaGraphFuser(graph->block(), graph).run();
// After FuseGraph some common subexpressions may come back
EliminateCommonSubexpression(graph);
// We might have emitted a fair amount of useless shape propagating code, so
// remove it
EliminateDeadCode(graph);
// Improve the quality of shape propagation code that was left
PeepholeOptimizeShapeExpressions(graph->block());
// Compile CudaFusionGroup
compileFusionRecursive(graph->block());
}
} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch
|