File: ir_internal_nodes.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (682 lines) | stat: -rw-r--r-- 19,840 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
#pragma once

#include <torch/csrc/WindowsTorchApiMacro.h>

#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_base_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_interface_nodes.h>

/*
 * Nodes in here should generally not be used by users. They should be behind
 * the scenes and users shouldn't have to be aware of what they do to use the
 * code generator.
 */

namespace torch {
namespace jit {
namespace fuser {

// Returns true if both v1 and v2 are scalars, are the same type of scalars, and
// dispatches to the inherited Val type's `->sameAs` call. e.g. if both vals are
// `Int` will dispatch to v1->as<Int>()->sameAs(v2.as<Int>())
bool areEqualScalars(Val* v1, Val* v2);

/*
 * TODO: improve implementation bool IterDomain::sameAs(const IterDomain*) const
 * TODO: Add testing of sameAs functions for these nodes
 */

/*
 * A specialization for Unary operations. Unary operations take in a single
 * input and produce a single output. Examples include:
 *   1) Casting operation i.e. float(a_val)
 *   2) Negation i.e. val * -1
 *   3) Reduction across a dimension i.e. val.sum(axis=2)
 *   4) split/merge
 */
class TORCH_CUDA_API UnaryOp : public Expr {
 public:
  ~UnaryOp() = default;
  UnaryOp(UnaryOpType _type, Val* _out, Val* _in);

  UnaryOp(const UnaryOp* src, IrCloner* ir_cloner);

  UnaryOp(const UnaryOp& other) = delete;
  UnaryOp& operator=(const UnaryOp& other) = delete;

  UnaryOp(UnaryOp&& other) = delete;
  UnaryOp& operator=(UnaryOp&& other) = delete;

  Val* out() const {
    return out_;
  }
  Val* in() const {
    return in_;
  }

  UnaryOpType getUnaryOpType() const {
    return unary_op_type_;
  }

  bool sameAs(const UnaryOp* const other) const;

 private:
  const UnaryOpType unary_op_type_;
  Val* const out_ = nullptr;
  Val* const in_ = nullptr;
};

/*
 * A specialization for Binary operations. Binary operations take in two inputs
 * and produce a single output. Examples include:
 *  1) Add/mul/div/mod/sub (A * B)
 *  2) LT (A < B)
 */
class TORCH_CUDA_API BinaryOp : public Expr {
 public:
  ~BinaryOp() = default;
  BinaryOp(BinaryOpType _type, Val* _out, Val* _lhs, Val* _rhs);

  BinaryOp(const BinaryOp* src, IrCloner* ir_cloner);

  BinaryOp(const BinaryOp& other) = delete;
  BinaryOp& operator=(const BinaryOp& other) = delete;

  BinaryOp(BinaryOp&& other) = delete;
  BinaryOp& operator=(BinaryOp&& other) = delete;

  Val* out() const {
    return out_;
  }
  Val* lhs() const {
    return lhs_;
  }
  Val* rhs() const {
    return rhs_;
  }

  BinaryOpType getBinaryOpType() const {
    return binary_op_type_;
  }

  bool sameAs(const BinaryOp* other) const;

 private:
  const BinaryOpType binary_op_type_;
  Val* const out_ = nullptr;
  Val* const lhs_ = nullptr;
  Val* const rhs_ = nullptr;
};

/*
 * Broadcast _in to match _out. broadcast_dims are relative to out. Where
 * broadcast_dims.size() + _in->nDims() == _out->nDims().
 */
class TORCH_CUDA_API BroadcastOp : public Expr {
 public:
  ~BroadcastOp() = default;
  BroadcastOp(Val* _out, Val* _in);

  BroadcastOp(const BroadcastOp* src, IrCloner* ir_cloner);

  BroadcastOp(const BroadcastOp& other) = delete;
  BroadcastOp& operator=(const BroadcastOp& other) = delete;

  BroadcastOp(BroadcastOp&& other) = delete;
  BroadcastOp& operator=(BroadcastOp&& other) = delete;

  Val* out() const {
    return out_;
  }
  Val* in() const {
    return in_;
  }

  bool sameAs(const BroadcastOp* const other) const;

 private:
  Val* const out_ = nullptr;
  Val* const in_ = nullptr;
};

/*
 * Reduction operation. Out is first initialized to _init. Then
 * _reduction_op_type is used to update out as out = reductionOp(out, in).
 * Output's axes marked as reduction will be reduced to produce an output
 * tensor. The output tensors size will be the size of all
 * non-reduction/non-broadcast dimensions.
 */
class TORCH_CUDA_API ReductionOp : public Expr {
 public:
  ~ReductionOp() = default;
  ReductionOp(BinaryOpType _reduction_op_type, Val* _init, Val* _out, Val* _in);

  ReductionOp(const ReductionOp* src, IrCloner* ir_cloner);

  ReductionOp(const ReductionOp& other) = delete;
  ReductionOp& operator=(const ReductionOp& other) = delete;

  ReductionOp(ReductionOp&& other) = delete;
  ReductionOp& operator=(ReductionOp&& other) = delete;

  Val* out() const {
    return out_;
  }
  Val* in() const {
    return in_;
  }
  Val* init() const {
    return init_;
  }

  BinaryOpType getReductionOpType() const {
    return reduction_op_type_;
  }

  bool sameAs(const ReductionOp* const other) const;

 private:
  const BinaryOpType reduction_op_type_;
  Val* const init_ = nullptr;
  Val* const out_ = nullptr;
  Val* const in_ = nullptr;
};

class TORCH_CUDA_API TernaryOp : public Expr {
 public:
  ~TernaryOp() = default;
  TernaryOp(TernaryOpType _type, Val* _out, Val* _in1, Val* _in2, Val* _in3);

  TernaryOp(const TernaryOp* src, IrCloner* ir_cloner);

  TernaryOp(const TernaryOp& other) = delete;
  TernaryOp& operator=(const TernaryOp& other) = delete;

  TernaryOp(TernaryOp&& other) = delete;
  TernaryOp& operator=(TernaryOp&& other) = delete;

  Val* out() const {
    return out_;
  }

  Val* in1() const {
    return in1_;
  }
  Val* in2() const {
    return in2_;
  }
  Val* in3() const {
    return in3_;
  }

  TernaryOpType getTernaryOpType() const {
    return ternary_op_type_;
  }

  bool sameAs(const TernaryOp* other) const;

 private:
  const TernaryOpType ternary_op_type_;
  Val* const out_ = nullptr;
  Val* const in1_ = nullptr;
  Val* const in2_ = nullptr;
  Val* const in3_ = nullptr;
};

// Simply a representation of an annotated 1D iterable from start to extent.
// TensorDomains which represent how to iterate over a tensor is made up of
// IterDomains to form an ND iterable. We directly set parallization strategies
// on IterDomains.
class TORCH_CUDA_API IterDomain : public Val {
 public:
  IterDomain(
      Val* _start,
      Val* _extent,
      ParallelType _parallel_type = ParallelType::Serial,
      IterType _iter_type = IterType::Iteration,
      bool _is_rfactor_domain = false);

  IterDomain(const IterDomain* src, IrCloner* ir_cloner);

  bool sameAs(const IterDomain* const other) const;

  // Returns a new IterDomain matching properties of this
  // TODO: parallel_method->getParallelType
  IterDomain* clone() const {
    return new IterDomain(
        start(),
        extent(),
        getParallelType(),
        getIterType(),
        isRFactorProduct());
  }

  static IterDomain* merge(IterDomain* outer, IterDomain* inner);

  // TODO: Make protected and friend TensorDomain so only it can call into this
  // directly, users should not be able to use this call
  static std::pair<IterDomain*, IterDomain*> split(IterDomain* in, Val* factor);

  // Run concretization pass and return the concretized domain of broadcast id
  static const IterDomain* concretizeDomain(IterDomain* bcast_dom);

  // Attempt to prove 2 IterDomains are equal in start and rawExtent
  static bool proveEquivalent(IterDomain* a, IterDomain* b);

  bool isReduction() const {
    return getIterType() == IterType::Reduction;
  }

  bool isRFactorProduct() const {
    return is_rfactor_domain_;
  }

  bool isBroadcast() const {
    return getIterType() == IterType::BroadcastWithStride ||
        getIterType() == IterType::BroadcastWithoutStride;
  }

  bool isParallelized() const {
    return getParallelType() != ParallelType::Serial;
  }

  // Return if this iter domain is mapped to a grid dimension
  bool isBlockDim() const {
    return (
        getParallelType() == ParallelType::BIDz ||
        getParallelType() == ParallelType::BIDy ||
        getParallelType() == ParallelType::BIDx);
  }

  // Return if this iter domain is mapped to a block dimension
  bool isThreadDim() const {
    return (
        getParallelType() == ParallelType::TIDz ||
        getParallelType() == ParallelType::TIDy ||
        getParallelType() == ParallelType::TIDx);
  }

  // Return if this iter domain is either mapped to a block or grid dimension
  bool isThread() const {
    return (isBlockDim() || isThreadDim());
  }

  void parallelize(ParallelType t) {
    parallel_type_ = t;

    TORCH_CHECK(
        t != ParallelType::Vectorize, "Vectorization not yet supported.");

    if (t == ParallelType::Unroll)
      TORCH_CHECK(
          start()->isZeroInt() && extent()->isConstScalar(),
          "Unrolling only supported with start = 0 and extent as a const int, but got ",
          "a start of ",
          start(),
          " and extent ",
          extent(),
          " .");
  }

  ParallelType getParallelType() const {
    return parallel_type_;
  }

  IterType getIterType() const {
    return iter_type_;
  }

  Val* start() const {
    return start_;
  }
  Val* extent() const;

  Val* rawExtent() const {
    return extent_;
  }

  IterDomain(const IterDomain& other) = delete;
  IterDomain& operator=(const IterDomain& other) = delete;

  IterDomain(IterDomain&& other) = delete;
  IterDomain& operator=(IterDomain&& other) = delete;

 private:
  Val* const start_ = nullptr;
  Val* const extent_ = nullptr;
  ParallelType parallel_type_ = ParallelType::Serial;
  IterType iter_type_ = IterType::Iteration;
  bool is_rfactor_domain_ = false;
};

/*
 * TensorDomain holds a vector of IterDomains. It holds an IterDomain for every
 * logical axis in its associated tensor. TensorDomain does not directly hold
 * the Tensor it is associated with, and in theory could be associated with
 * multiple tensors. TensorDomain's primary responsibility is to provide a
 * mechanism to access history of transformations that were used to generate it.
 * This is done through the normal interaction of Expr/Val in Fusion. i.e. if we
 * want to know the previous operation generating a particular TensorDomain we
 * can simply call FusionGuard::getCurFusion()->origin(a_tensor_domain) which
 * should give us an operation in the list [split, merge] or similar
 * operations that take in a TensorDomain, applies a transformation and outputs
 * a tensor domain.
 */
class TORCH_CUDA_API TensorDomain : public Val {
 public:
  TensorDomain() = delete;
  ~TensorDomain() = default;

  TensorDomain(const TensorDomain& other) = delete;
  TensorDomain& operator=(const TensorDomain& other) = delete;

  TensorDomain(TensorDomain&& other) = delete;
  TensorDomain& operator=(TensorDomain&& other) = delete;

  explicit TensorDomain(
      std::vector<IterDomain*> _domain,
      std::vector<bool> _contiguity = std::vector<bool>());

  TensorDomain(
      std::vector<IterDomain*> _root_domain,
      std::vector<IterDomain*> _domain,
      std::vector<bool> _contiguity = std::vector<bool>());

  TensorDomain(
      std::vector<IterDomain*> _root_domain,
      std::vector<IterDomain*> _rfactor_domain,
      std::vector<IterDomain*> _domain,
      std::vector<bool> _contiguity = std::vector<bool>());

  TensorDomain(const TensorDomain* src, IrCloner* ir_cloner);

  bool operator==(const TensorDomain& other) const;
  bool operator!=(const TensorDomain& other) const {
    return !(*this == other);
  }

  std::vector<IterDomain*>::size_type nDims() const {
    return domain_.size();
  }

  bool sameAs(const TensorDomain* const other) const;

  static bool sameAs(
      const std::vector<IterDomain*>& lhs,
      const std::vector<IterDomain*>& rhs);

  const std::vector<IterDomain*>& domain() const {
    return domain_;
  }

  const std::vector<bool>& contiguity() const {
    return contiguity_;
  }

  std::string getContiguityString() const {
    std::stringstream ss;
    for (auto b : contiguity()) {
      ss << (b ? "t" : "f");
    }
    return ss.str();
  }

  bool hasReduction() const;
  bool hasBlockReduction() const;
  bool hasGridReduction() const;
  bool hasBlockBroadcast() const;
  bool hasBroadcast() const;
  bool hasRFactor() const;

  c10::optional<unsigned int> getReductionAxis() const;

  const std::vector<IterDomain*>& noReductions() const {
    return no_reduction_domain_;
  }

  const std::vector<IterDomain*>& noBroadcasts() const {
    return no_bcast_domain_;
  }

  const std::vector<IterDomain*>& getRootDomain() const {
    return root_domain_;
  };

  const std::vector<IterDomain*>& getRFactorDomain() const {
    return rfactor_domain_;
  };

  // If rfactor domain exists in domain() return it, otherwise return root
  // domain.
  const std::vector<IterDomain*>& getMaybeRFactorDomain() const {
    return hasRFactor() ? getRFactorDomain() : getRootDomain();
  }

  void resetDomains() {
    no_reduction_domain_ = noReductions(domain_);
    no_bcast_domain_ = noBroadcasts(domain_);
  }

  // i here is int, as we want to accept negative value and ::size_type can be a
  // uint.
  IterDomain* axis(int i) const;

  size_t posOf(IterDomain* id) const;

  // Split "axis" into 2 axes where the inner axes is size of "factor"
  // and outer axis is size axis.size() / factor. Allow factor to be symbolic
  // value instead of constant.
  // TODO: Make protected and friend TensorDomain so only it can call into this
  // directly, users should not be able to use this call
  void split(int axis_, Val* factor);

  // Merge axis_o and axis_i. axis_i is the fast changing dimension. Resulting
  // axis is by default placed at original position axis_o
  void merge(int axis_o, int axis_i);

  // Reorder axes according to map[old_pos] = new_pos
  void reorder(const std::unordered_map<int, int>& old2new);

  static std::vector<IterDomain*> orderedAs(
      const std::vector<IterDomain*>& td,
      const std::unordered_map<int, int>& old2new);

  static std::vector<IterDomain*> noReductions(const std::vector<IterDomain*>&);
  static std::vector<IterDomain*> noBroadcasts(const std::vector<IterDomain*>&);

  static bool hasBroadcast(const std::vector<IterDomain*>&);
  static bool hasReduction(const std::vector<IterDomain*>&);

  // return std::pair<producer_id, consumer_id> representing
  // the mapping between corresponding axes. Not all axes have
  // corresponding mapping, e.g., broadcast axis in consumer
  // does not have any corresponding axis in producer.
  static std::vector<std::pair<int, int>> mapDomainPandC(
      const std::vector<IterDomain*>& producer,
      const std::vector<IterDomain*>& consumer);

  // Create a map between producer root IterDomains and consumer root
  // IterDomains.
  static std::vector<std::pair<IterDomain*, IterDomain*>> mapRootPandC(
      const TensorDomain* producer,
      const TensorDomain* consumer);

  // Create a map from consumer root IterDomains -> producer root IterDomains.
  // Only those root consumer IDs present in consumer_root_dims_to_map
  // will be attempted to map to their corresponding producer IDs.
  static std::unordered_map<IterDomain*, IterDomain*> mapRootCtoP(
      const TensorDomain* consumer,
      const TensorDomain* producer,
      const std::unordered_set<IterDomain*>& consumer_root_dims_to_map);

  static std::unordered_map<IterDomain*, IterDomain*> mapRootCtoP(
      const TensorDomain* consumer,
      const TensorDomain* producer) {
    return mapRootCtoP(
        consumer,
        producer,
        std::unordered_set<IterDomain*>(
            consumer->getRootDomain().begin(),
            consumer->getRootDomain().end()));
  }

  // Create a map from producer root IterDomains -> consumer root IterDomains.
  // Only those root producer IDs present in producer_maybe_rfactor_dims_to_map
  // will be attempted to map to their corresponding consumer IDs.
  static std::unordered_map<IterDomain*, IterDomain*> mapRootPtoC(
      const TensorDomain* producer,
      const TensorDomain* consumer,
      const std::unordered_set<IterDomain*>&
          producer_maybe_rfactor_dims_to_map);

  static std::unordered_map<IterDomain*, IterDomain*> mapRootPtoC(
      const TensorDomain* producer,
      const TensorDomain* consumer) {
    auto p_root = producer->getMaybeRFactorDomain();
    return mapRootPtoC(
        producer,
        consumer,
        std::unordered_set<IterDomain*>(p_root.begin(), p_root.end()));
  }

  // pair is in order where second is the consumer of first
  std::pair<TensorDomain*, TensorDomain*> rFactor(const std::vector<int>& axes);

 private:
  const std::vector<IterDomain*> root_domain_;
  std::vector<IterDomain*> domain_;
  std::vector<IterDomain*> no_bcast_domain_;
  std::vector<IterDomain*> no_reduction_domain_;
  const std::vector<IterDomain*> rfactor_domain_;
  const std::vector<bool> contiguity_;
};

/*
 * Representation a split on an IterDomain by "factor"
 * TODO: Implement split by nparts
 */
class TORCH_CUDA_API Split : public Expr {
 public:
  ~Split() = default;

  Split(const Split& other) = delete;
  Split& operator=(const Split& other) = delete;

  Split(Split&& other) = delete;
  Split& operator=(Split&& other) = delete;

  Split(IterDomain* _outer, IterDomain* _inner, IterDomain* _in, Val* _factor);

  Split(const Split* src, IrCloner* ir_cloner);

  IterDomain* outer() const {
    return outer_;
  }
  IterDomain* inner() const {
    return inner_;
  }
  IterDomain* in() const {
    return in_;
  }
  Val* factor() const {
    return factor_;
  }
  bool sameAs(const Split* const other) const;

 private:
  IterDomain* const outer_ = nullptr;
  IterDomain* const inner_ = nullptr;
  IterDomain* const in_ = nullptr;
  Val* const factor_ = nullptr;
};

/*
 * Merge the IterDomains outer and inner into one domain, outer and inner
 * dictate which will be traversed first (inner). Both IterDomains must be of
 * the same iter or reduction type, as well as the same parallelization strategy
 * if there is one.
 * TODO: Should this be a unary op type?
 */
class TORCH_CUDA_API Merge : public Expr {
 public:
  ~Merge() = default;
  Merge(IterDomain* _out, IterDomain* _outer, IterDomain* _inner);

  Merge(const Merge* src, IrCloner* ir_cloner);

  Merge(const Merge& other) = delete;
  Merge& operator=(const Merge& other) = delete;

  Merge(Merge&& other) = delete;
  Merge& operator=(Merge&& other) = delete;

  IterDomain* out() const {
    return out_;
  }
  IterDomain* outer() const {
    return outer_;
  }
  IterDomain* inner() const {
    return inner_;
  }

  bool sameAs(const Merge* const other) const;

 private:
  IterDomain* const out_ = nullptr;
  IterDomain* const outer_ = nullptr;
  IterDomain* const inner_ = nullptr;
};

/*
 * Integer value which has a special name. These could be:
 * - threadIdx.x
 * - blockIdx.y
 * - blockDim.z
 * - T3.stride[2]
 */
class TORCH_CUDA_API NamedScalar : public Val {
 public:
  ~NamedScalar() = default;
  NamedScalar() = delete;

  NamedScalar(std::string _name, DataType dtype)
      : Val(ValType::NamedScalar, dtype), name_(_name) {}

  NamedScalar(const NamedScalar* src, IrCloner* ir_cloner);

  NamedScalar(const NamedScalar& other) = delete;
  NamedScalar& operator=(const NamedScalar& other) = delete;

  NamedScalar(NamedScalar&& other) = delete;
  NamedScalar& operator=(NamedScalar&& other) = delete;

  const std::string& name() const {
    return name_;
  }

  bool sameAs(const NamedScalar* const other) const {
    return other->name().compare(name()) == 0;
  }

  // Return the named scalar extent of a parallel dimension (e.g. blockDim.x)
  static NamedScalar* getParallelDim(ParallelType p_type);

  // Return the named scalar index of a parallel dimension (e.g. threadIdx.x)
  static NamedScalar* getParallelIndex(ParallelType p_type);

  // Return the parallel type of this NamedScalar if it is an extent of a
  // parallel dimension
  c10::optional<ParallelType> getParallelDim() const;

  // Return the parallel type of this NamedScalar if it is an index of a
  // parallel dimension
  c10::optional<ParallelType> getParallelIndex() const;

 private:
  std::string name_;
};

} // namespace fuser
} // namespace jit
} // namespace torch