1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
|
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/ir_cloner.h>
#include <torch/csrc/jit/codegen/cuda/ir_interface_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir.h>
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>
#include <torch/csrc/jit/codegen/cuda/transform_rfactor.h>
#include <sstream>
namespace torch {
namespace jit {
namespace fuser {
namespace {
class ScalarCheck : OptInDispatch {
public:
static bool sameAs(Val* v1, Val* v2) {
if (v1 == v2)
return true;
if (v1->getValType() != v2->getValType())
return false;
if (v1->getDataType() != v2->getDataType())
return false;
ScalarCheck sc(v1, v2);
return sc.same_;
}
private:
void handle(Bool* b) override {
same_ = v1_->as<Bool>()->sameAs(v2_->as<Bool>());
}
void handle(Float* f) override {
same_ = v1_->as<Float>()->sameAs(v2_->as<Float>());
}
void handle(Half* h) override {
same_ = v1_->as<Half>()->sameAs(v2_->as<Half>());
}
void handle(Int* i) override {
same_ = v1_->as<Int>()->sameAs(v2_->as<Int>());
}
void handle(NamedScalar* ns) override {
same_ = v1_->as<NamedScalar>()->sameAs(v2_->as<NamedScalar>());
}
ScalarCheck(Val* _v1, Val* _v2) : v1_(_v1), v2_(_v2) {
OptInDispatch::handle(v1_);
}
private:
Val* v1_ = nullptr;
Val* v2_ = nullptr;
bool same_ = false;
};
} // namespace
bool areEqualScalars(Val* v1, Val* v2) {
return ScalarCheck::sameAs(v1, v2);
}
Bool::Bool(const Bool* src, IrCloner* ir_cloner)
: Val(src, ir_cloner), maybe_value_(src->maybe_value_) {}
bool Bool::sameAs(const Bool* const other) const {
if (isConst() && other->isConst())
return *value() == *(other->value());
return this == other;
}
Float::Float(const Float* src, IrCloner* ir_cloner)
: Val(src, ir_cloner), maybe_value_(src->maybe_value_) {}
bool Float::sameAs(const Float* const other) const {
if (isConst() && other->isConst())
return *value() == *(other->value());
return this == other;
}
Half::Half(const Half* src, IrCloner* ir_cloner)
: Val(src, ir_cloner), maybe_value_(src->maybe_value_) {}
bool Half::sameAs(const Half* const other) const {
if (isConst() && other->isConst())
return *value() == *(other->value());
return this == other;
}
Int::Int(const Int* src, IrCloner* ir_cloner)
: Val(src, ir_cloner), maybe_value_(src->maybe_value_) {}
bool Int::sameAs(const Int* const other) const {
if (isConst() && other->isConst())
return *value() == *(other->value());
return this == other;
}
UnaryOp::UnaryOp(UnaryOpType _type, Val* _out, Val* _in)
: Expr(ExprType::UnaryOp), unary_op_type_{_type}, out_{_out}, in_{_in} {
addOutput(_out);
addInput(_in);
name_ = FusionGuard::getCurFusion()->registerExpr(this);
}
UnaryOp::UnaryOp(const UnaryOp* src, IrCloner* ir_cloner)
: Expr(src, ir_cloner),
unary_op_type_(src->unary_op_type_),
out_(ir_cloner->clone(src->out_)),
in_(ir_cloner->clone(src->in_)) {}
bool UnaryOp::sameAs(const UnaryOp* const other) const {
if (type() != other->type())
return false;
return as<Expr>()->sameAs(other);
}
BinaryOp::BinaryOp(BinaryOpType _type, Val* _out, Val* _lhs, Val* _rhs)
: Expr(ExprType::BinaryOp),
binary_op_type_{_type},
out_{_out},
lhs_{_lhs},
rhs_{_rhs} {
addOutput(_out);
addInput(_lhs);
addInput(_rhs);
name_ = FusionGuard::getCurFusion()->registerExpr(this);
}
BinaryOp::BinaryOp(const BinaryOp* src, IrCloner* ir_cloner)
: Expr(src, ir_cloner),
binary_op_type_(src->binary_op_type_),
out_(ir_cloner->clone(src->out_)),
lhs_(ir_cloner->clone(src->lhs_)),
rhs_(ir_cloner->clone(src->rhs_)) {}
bool BinaryOp::sameAs(const BinaryOp* other) const {
if (getBinaryOpType() != other->getBinaryOpType())
return false;
if (!(lhs()->sameAs(other->lhs()) && rhs()->sameAs(other->rhs())))
return false;
return true;
}
TernaryOp::TernaryOp(
TernaryOpType _type,
Val* _out,
Val* _in1,
Val* _in2,
Val* _in3)
: Expr(ExprType::TernaryOp),
ternary_op_type_{_type},
out_{_out},
in1_{_in1},
in2_{_in2},
in3_{_in3} {
addOutput(_out);
addInput(_in1);
addInput(_in2);
addInput(_in3);
name_ = FusionGuard::getCurFusion()->registerExpr(this);
}
TernaryOp::TernaryOp(const TernaryOp* src, IrCloner* ir_cloner)
: Expr(src, ir_cloner),
ternary_op_type_(src->ternary_op_type_),
out_(ir_cloner->clone(src->out_)),
in1_(ir_cloner->clone(src->in1_)),
in2_(ir_cloner->clone(src->in2_)),
in3_(ir_cloner->clone(src->in3_)) {}
bool TernaryOp::sameAs(const TernaryOp* other) const {
if (getTernaryOpType() != other->getTernaryOpType())
return false;
if (!(in1()->sameAs(other->in1()) && in2()->sameAs(other->in2()) &&
in3()->sameAs(other->in3())))
return false;
return true;
}
BroadcastOp::BroadcastOp(Val* _out, Val* _in)
: Expr(ExprType::BroadcastOp), out_(_out), in_(_in) {
auto out_type = _out->getValType().value();
auto in_type = _in->getValType().value();
TORCH_INTERNAL_ASSERT(
out_type == ValType::TensorView && in_type == ValType::TensorView,
"Cannot braodcast a non-tensor object.");
// This is a generic check that root dims of a consumer and producer match.
// Maybe we shouldn't relegate it to this constructor.
const auto c_tv = out()->as<TensorView>();
const auto p_tv = in()->as<TensorView>();
const auto& c_root = c_tv->getRootDomain();
const auto& p_root = p_tv->getMaybeRFactorDomain();
const auto root_p2c = TensorDomain::mapDomainPandC(p_root, c_root);
std::vector<bool> c_mapped(c_root.size(), false);
std::vector<bool> p_mapped(p_root.size(), false);
for (auto pair_entry : root_p2c) {
auto p_i = pair_entry.first;
p_mapped[p_i] = true;
auto c_i = pair_entry.second;
c_mapped[c_i] = true;
}
bool bad_mismatch = false;
for (size_t i = 0; i < c_root.size(); i++) {
if (!c_mapped[i]) {
if (!c_root[i]->isBroadcast()) {
bad_mismatch = true;
}
}
}
for (size_t i = 0; i < p_root.size(); i++) {
if (!p_mapped[i]) {
if (!p_root[i]->isReduction()) {
bad_mismatch = true;
}
}
}
TORCH_INTERNAL_ASSERT(
!bad_mismatch,
"Invalid broadcast op. Non-broadcasted dims don't match from input to output.");
addOutput(_out);
addInput(_in);
name_ = FusionGuard::getCurFusion()->registerExpr(this);
}
BroadcastOp::BroadcastOp(const BroadcastOp* src, IrCloner* ir_cloner)
: Expr(src, ir_cloner),
out_(ir_cloner->clone(src->out_)),
in_(ir_cloner->clone(src->in_)) {}
bool BroadcastOp::sameAs(const BroadcastOp* const other) const {
return other->in() == in() && other->out() == out();
}
ReductionOp::ReductionOp(
BinaryOpType _reduction_op_type,
Val* _init,
Val* _out,
Val* _in)
: Expr(ExprType::ReductionOp),
reduction_op_type_(_reduction_op_type),
init_(_init),
out_(_out),
in_(_in) {
if (_out->getValType().value() == ValType::TensorView) {
TORCH_INTERNAL_ASSERT(
_in->getValType() == ValType::TensorView &&
_out->getValType() == ValType::TensorView,
"Reduction operation was created that does not have tensor inputs and outputs.");
TORCH_INTERNAL_ASSERT(
TensorDomain::noReductions(
_in->as<TensorView>()->getMaybeRFactorDomain())
.size() == _out->as<TensorView>()->getRootDomain().size(),
"Reduction operation created with mismatched domains.");
} else {
TORCH_INTERNAL_ASSERT(
_in->getValType() == ValType::TensorIndex &&
_out->getValType() == ValType::TensorIndex,
"Reduction operation was created that does not have tensor inputs and outputs.");
}
TORCH_INTERNAL_ASSERT(
_init->isConstScalar(),
"Tried to create a reduction operation whith an initial value that isn't a constant.");
addOutput(_out);
addInput(_in);
name_ = FusionGuard::getCurFusion()->registerExpr(this);
}
ReductionOp::ReductionOp(const ReductionOp* src, IrCloner* ir_cloner)
: Expr(src, ir_cloner),
reduction_op_type_(src->reduction_op_type_),
init_(ir_cloner->clone(src->init_)),
out_(ir_cloner->clone(src->out_)),
in_(ir_cloner->clone(src->in_)) {}
bool ReductionOp::sameAs(const ReductionOp* other) const {
return (
in()->sameAs(other->in()) &&
getReductionOpType() == other->getReductionOpType() &&
init()->sameAs(other->init()));
}
IterDomain::IterDomain(
Val* _start,
Val* _extent,
ParallelType _parallel_type,
IterType _iter_type,
bool _is_rfactor_domain)
: Val(ValType::IterDomain, DataType::Int, false),
start_(_start),
extent_(_extent),
parallel_type_(_parallel_type),
iter_type_(_iter_type),
is_rfactor_domain_(_is_rfactor_domain) {
TORCH_CHECK(
!(isRFactorProduct() && isBroadcast()),
"IterDomain cannot be both a broadcast and rfactor domain.");
TORCH_INTERNAL_ASSERT(
_extent->isAnInt(),
"Cannot create an iter domain over an extent that is not an int but received ",
_extent,
" .");
TORCH_INTERNAL_ASSERT(
_start->isAnInt(),
"Cannot create an iter domain with a start that is not an int but received ",
_extent,
" .");
// Check that all for-loops iterate from zero to some positive integer
// lower_insert_syncs uses this assumption for correctness.
TORCH_INTERNAL_ASSERT(
_start->isZeroInt(),
"Cannot create an iter domain with a start that is non-zero but received ",
_extent,
" .");
TORCH_INTERNAL_ASSERT(
!_extent->isZeroInt(),
"Cannot create an iter domain with a extent that is zero but received ",
_extent,
" .");
// TORCH_INTERNAL_ASSERT(!kir::isLoweredVal(_extent));
name_ = fusion_->registerVal(this);
}
IterDomain::IterDomain(const IterDomain* src, IrCloner* ir_cloner)
: Val(src, ir_cloner),
start_(ir_cloner->clone(src->start_)),
extent_(ir_cloner->clone(src->extent_)),
parallel_type_(src->parallel_type_),
iter_type_(src->iter_type_),
is_rfactor_domain_(src->is_rfactor_domain_) {}
bool IterDomain::sameAs(const IterDomain* const other) const {
if (other == this)
return true;
bool is_same = isReduction() == other->isReduction() &&
getParallelType() == other->getParallelType();
is_same = is_same && ScalarCheck::sameAs(extent(), other->extent());
is_same = is_same && ScalarCheck::sameAs(start(), other->start());
return is_same;
}
IterDomain* IterDomain::merge(IterDomain* outer, IterDomain* inner) {
TORCH_CHECK(
outer->start()->isZeroInt() && inner->start()->isZeroInt(),
"Merging IterDomains with starting values that aren't 0 is not supported at this time.");
TORCH_CHECK(
outer->isReduction() == inner->isReduction(),
"Merging IterDomains requires that their iteration types match.");
TORCH_CHECK(
outer->getParallelType() == inner->getParallelType(),
"Merging IterDomains requires that their parallel types match.");
Val* merged_id_size = mul(outer->extent(), inner->extent());
IterType itype = outer->getIterType();
if (outer->isBroadcast() && inner->isBroadcast()) {
if (outer->getIterType() == IterType::BroadcastWithStride ||
inner->getIterType() == IterType::BroadcastWithStride) {
itype = IterType::BroadcastWithStride;
} else {
itype = IterType::BroadcastWithoutStride;
}
} else if (outer->isBroadcast() || inner->isBroadcast()) {
itype = IterType::Iteration;
}
IterDomain* merged_id = new IterDomain(
new Int(0),
merged_id_size->as<Int>(),
outer->getParallelType(),
itype,
outer->isRFactorProduct() || inner->isRFactorProduct());
new Merge(merged_id, outer, inner);
return merged_id;
}
std::pair<IterDomain*, IterDomain*> IterDomain::split(
IterDomain* in,
Val* factor) {
TORCH_CHECK(
in->start()->isZeroInt(),
"Splitting IterDomains with starting values that aren't 0 is not supported at this time.");
if (in->getParallelType() != ParallelType::Serial)
TORCH_CHECK(
false,
"Splitting an axis of non-Serial iteration is not supported at this time."
" Parallelization strategy must be set after calling split.");
TORCH_CHECK(factor->isAnInt(), "Cannot split by non-integer value ", factor);
if (factor->getValType() == ValType::Scalar) {
TORCH_CHECK(
factor->isConstScalar() ||
FusionGuard::getCurFusion()->hasInput(factor),
factor,
" is not a constant nor an input. It must be one or the other to be used in a split.",
" If you want a symbolic split based on a thread dimension please use IterDomain::split(IterDomain*, ParallelType);");
} else if (factor->getValType() == ValType::NamedScalar) {
TORCH_CHECK(
factor->as<NamedScalar>()->getParallelDim() != c10::nullopt,
"Splitting a dimension by a named scalar is only supported on block or grid dimensions but received ",
factor);
}
// outer loop size
Val* vo = ceilDiv(in->extent(), factor);
// outer loop IterDomain
IterDomain* ido = new IterDomain(
new Int(0),
vo->as<Int>(),
in->getParallelType(),
in->getIterType(),
in->isRFactorProduct());
// inner loop IterDomain
IterDomain* idi = new IterDomain(
new Int(0),
factor,
in->getParallelType(),
in->getIterType(),
in->isRFactorProduct());
new Split(ido, idi, in, factor);
return {ido, idi};
}
// TODO(kir): review if this is still needed in the Fusion IR
Val* IterDomain::extent() const {
if (isThread()) {
if (extent_->getValType() == ValType::Scalar)
if (extent_->as<Int>()->isConst())
return extent_;
return NamedScalar::getParallelDim(getParallelType());
}
return extent_;
}
TensorDomain::TensorDomain(
std::vector<IterDomain*> _domain,
std::vector<bool> _contiguity)
: Val(ValType::TensorDomain),
root_domain_(std::move(_domain)),
contiguity_(
_contiguity.empty() ? std::vector<bool>(root_domain_.size(), false)
: std::move(_contiguity)) {
TORCH_CHECK(
contiguity_.size() == root_domain_.size(),
"Invalid contiguity information provided, incorrect size. Recieved vector of size ",
contiguity_.size(),
" but needed one of size ",
root_domain_.size());
domain_ = root_domain_;
resetDomains();
}
TensorDomain::TensorDomain(
std::vector<IterDomain*> _root_domain,
std::vector<IterDomain*> _domain,
std::vector<bool> _contiguity)
: Val(ValType::TensorDomain, DataType::Null, false),
root_domain_(std::move(_root_domain)),
domain_(std::move(_domain)),
contiguity_(
_contiguity.empty() ? std::vector<bool>(root_domain_.size(), false)
: std::move(_contiguity)) {
TORCH_CHECK(
contiguity_.size() == root_domain_.size(),
"Invalid contiguity information provided, incorrect size. Recieved vector of size ",
contiguity_.size(),
" but needed one of size ",
root_domain_.size());
std::vector<Val*> domain_vals(domain_.begin(), domain_.end());
auto inps = IterVisitor::getInputsTo(domain_vals);
// Validate that the root domain consists of all inputs to _domain
// Uncertain if this will hold for RFactor
std::unordered_set<Val*> root_vals(root_domain_.begin(), root_domain_.end());
std::for_each(inps.begin(), inps.end(), [root_vals](Val* inp) {
TORCH_INTERNAL_ASSERT(
root_vals.find(inp) != root_vals.end(),
"Invalid tensor domain, ",
inp,
" is an input of domain, but it is not found in the root domain.");
});
resetDomains();
name_ = fusion_->registerVal(this);
}
TensorDomain::TensorDomain(
std::vector<IterDomain*> _root_domain,
std::vector<IterDomain*> _rfactor_domain,
std::vector<IterDomain*> _domain,
std::vector<bool> _contiguity)
: Val(ValType::TensorDomain, DataType::Null, false),
root_domain_(std::move(_root_domain)),
domain_(std::move(_domain)),
rfactor_domain_(std::move(_rfactor_domain)),
contiguity_(
_contiguity.empty() ? std::vector<bool>(root_domain_.size(), false)
: std::move(_contiguity)) {
TORCH_CHECK(
contiguity_.size() == root_domain_.size(),
"Invalid contiguity information provided, incorrect size. Recieved vector of size ",
contiguity_.size(),
" but needed one of size ",
root_domain_.size());
auto inps = IterVisitor::getInputsTo(
std::vector<Val*>(domain_.begin(), domain_.end()));
// Validate that the root domain consists of all inputs to _domain
// Uncertain if this will hold for RFactor
std::unordered_set<Val*> root_vals(root_domain_.begin(), root_domain_.end());
std::for_each(inps.begin(), inps.end(), [root_vals](Val* inp) {
TORCH_INTERNAL_ASSERT(
root_vals.find(inp) != root_vals.end(),
"Invalid tensor domain, ",
inp,
" is an input of domain, but it is not found in the root domain.");
});
inps = IterVisitor::getInputsTo(
std::vector<Val*>(rfactor_domain_.begin(), rfactor_domain_.end()));
std::for_each(inps.begin(), inps.end(), [root_vals](Val* inp) {
TORCH_INTERNAL_ASSERT(
root_vals.find(inp) != root_vals.end(),
"Invalid tensor domain, ",
inp,
" is an input of the rfactor domain, but it is not found in the root domain.");
});
resetDomains();
name_ = fusion_->registerVal(this);
}
TensorDomain::TensorDomain(const TensorDomain* src, IrCloner* ir_cloner)
: Val(src, ir_cloner),
root_domain_(ir_cloner->clone(src->root_domain_)),
domain_(ir_cloner->clone(src->domain_)),
no_bcast_domain_(ir_cloner->clone(src->no_bcast_domain_)),
no_reduction_domain_(ir_cloner->clone(src->no_reduction_domain_)),
rfactor_domain_(ir_cloner->clone(src->rfactor_domain_)),
contiguity_(src->contiguity()) {}
bool TensorDomain::operator==(const TensorDomain& other) const {
// Checks equality of each class field. Should not be necessary to
// check no_bcast_domain_ and no_reduction_domain_ as they are just
// derived from domain_.
return root_domain_ == other.root_domain_ && domain_ == other.domain_ &&
rfactor_domain_ == other.rfactor_domain_ &&
contiguity_ == other.contiguity_;
}
bool TensorDomain::sameAs(const TensorDomain* const other) const {
if (nDims() != other->nDims())
return false;
if (getRootDomain().size() != other->getRootDomain().size())
return false;
if (getRFactorDomain().size() != other->getRFactorDomain().size())
return false;
for (size_t i = 0; i < nDims(); i++)
if (!(axis(i)->sameAs(other->axis(i))))
return false;
for (size_t i = 0; i < getRootDomain().size(); i++)
if (!(getRootDomain()[i]->sameAs(other->getRootDomain()[i])))
return false;
for (size_t i = 0; i < getRFactorDomain().size(); i++)
if (!(getRFactorDomain()[i]->sameAs(other->getRFactorDomain()[i])))
return false;
return true;
}
bool TensorDomain::sameAs(
const std::vector<IterDomain*>& lhs,
const std::vector<IterDomain*>& rhs) {
if (lhs.size() != rhs.size())
return false;
size_t i = 0;
for (auto td_lhs : lhs) {
if (!td_lhs->sameAs(rhs[i++]))
return false;
}
return true;
}
bool TensorDomain::hasReduction() const {
return no_reduction_domain_.size() != domain_.size();
}
bool TensorDomain::hasBlockReduction() const {
return std::any_of(domain_.begin(), domain_.end(), [](IterDomain* id) {
return id->isReduction() && id->isThreadDim();
});
}
bool TensorDomain::hasGridReduction() const {
return std::any_of(domain_.begin(), domain_.end(), [](IterDomain* id) {
return id->isReduction() && id->isBlockDim();
});
}
bool TensorDomain::hasBlockBroadcast() const {
return std::any_of(domain_.begin(), domain_.end(), [](IterDomain* id) {
return id->isBroadcast() && id->isThreadDim();
});
}
bool TensorDomain::hasBroadcast() const {
return no_bcast_domain_.size() != domain_.size();
}
bool TensorDomain::hasRFactor() const {
return !rfactor_domain_.empty();
}
c10::optional<unsigned int> TensorDomain::getReductionAxis() const {
auto it = std::find_if(domain_.begin(), domain_.end(), [](const auto& id) {
return id->isReduction();
});
if (it == domain_.end()) {
return c10::optional<unsigned int>();
} else {
return c10::optional<unsigned int>(std::distance(domain_.begin(), it));
}
}
// i here is int, as we want to accept negative value and ::size_type can be a
// uint.
IterDomain* TensorDomain::axis(int i) const {
TORCH_INTERNAL_ASSERT(
nDims() > 0, "Tried to access an axis in a 0-dim domain");
if (i < 0)
i += nDims();
TORCH_CHECK(
i >= 0 && (unsigned int)i < nDims(),
"Tried to access axis ",
i,
" in domain ",
this);
return domain_[i];
}
size_t TensorDomain::posOf(IterDomain* id) const {
TORCH_INTERNAL_ASSERT(nDims() > 0, "Tried to find an axis in a 0-dim domain");
size_t i = 0;
while (i < domain_.size()) {
if (domain_[i] == id)
return i;
i++;
}
TORCH_CHECK(false, "Provided id is not part of this domain.");
}
void TensorDomain::split(int axis_, Val* factor) {
TORCH_INTERNAL_ASSERT(nDims() > 0, "Tried to do split on a 0-dim domain");
if (axis_ < 0)
axis_ += nDims();
TORCH_INTERNAL_ASSERT(
axis_ >= 0 && (unsigned int)axis_ < nDims(),
"Tried to split on axis outside TensorDomain's range.");
IterDomain* id = axis(axis_);
auto split_ids = IterDomain::split(id, factor);
domain_.erase(domain_.begin() + axis_);
domain_.insert(domain_.begin() + axis_, split_ids.second);
domain_.insert(domain_.begin() + axis_, split_ids.first);
resetDomains();
}
// Merge "axis" and "axis+1" into 1 dimension
void TensorDomain::merge(int axis_o, int axis_i) {
TORCH_INTERNAL_ASSERT(nDims() > 0, "Tried to do merge on a 0-dim domain");
if (axis_o < 0)
axis_o += nDims();
if (axis_i < 0)
axis_i += nDims();
TORCH_CHECK(
axis_o >= 0 && (unsigned int)axis_o < nDims() && axis_i >= 0 &&
(unsigned int)axis_i < nDims(),
"Invalid merge detected, either one or both axes are outside of TensorView's range.");
TORCH_CHECK(
axis_o != axis_i,
"Invalid merge detected, axes provided are the same axis.");
if (axis_o > axis_i) {
auto tmp = axis_i;
axis_i = axis_o;
axis_o = tmp;
}
IterDomain* first = axis(axis_o);
IterDomain* second = axis(axis_i);
IterDomain* merged_id = IterDomain::merge(first, second);
domain_.erase(domain_.begin() + axis_i);
domain_.erase(domain_.begin() + axis_o);
domain_.insert(domain_.begin() + axis_o, merged_id);
resetDomains();
}
// Reorder axes according to map[old_pos] = new_pos
void TensorDomain::reorder(const std::unordered_map<int, int>& old2new_) {
TORCH_INTERNAL_ASSERT(
!(nDims() == 0 && old2new_.size() > 0),
"Tried to reorder a 0-dim domain");
domain_ = orderedAs(domain_, old2new_);
resetDomains();
}
std::vector<IterDomain*> TensorDomain::orderedAs(
const std::vector<IterDomain*>& dom,
const std::unordered_map<int, int>& old2new_) {
TORCH_INTERNAL_ASSERT(
!(dom.size() == 0 && old2new_.size() > 0),
"Tried to reorder a 0-dim domain");
// Eventhough these checks are already in TensorView, we want to redo them as
// we can enter this function from other places, not through TensorView
// adjust based on negative values (any negative values gets nDims added to
// it)
std::unordered_map<int, int> old2new;
auto ndims = dom.size();
std::transform(
old2new_.begin(),
old2new_.end(),
std::inserter(old2new, old2new.begin()),
[ndims](std::unordered_map<int, int>::value_type entry) {
return std::unordered_map<int, int>::value_type({
entry.first < 0 ? entry.first + ndims : entry.first,
entry.second < 0 ? entry.second + ndims : entry.second,
});
});
// Check if any adjusted values are < 0, or >= nDims, which are invalid
TORCH_CHECK(
std::none_of(
old2new.begin(),
old2new.end(),
[ndims](std::unordered_map<int, int>::value_type entry) {
return entry.first < 0 || (unsigned int)entry.first >= ndims ||
entry.second < 0 || (unsigned int)entry.second >= ndims;
}),
"Reorder axes are not within the number of dimensions of the provided domain.");
// Going to use sets, to see if any duplicate values are in the map.
std::set<int> old_pos_set;
std::transform(
old2new.begin(),
old2new.end(),
std::inserter(old_pos_set, old_pos_set.begin()),
[](std::unordered_map<int, int>::value_type entry) {
return entry.first;
});
std::set<int> new_pos_set;
std::transform(
old2new.begin(),
old2new.end(),
std::inserter(new_pos_set, new_pos_set.begin()),
[](std::unordered_map<int, int>::value_type entry) {
return entry.second;
});
// Error out if duplicate values are found.
TORCH_CHECK(
old_pos_set.size() == old2new.size() &&
new_pos_set.size() == old2new.size(),
"Duplicate entries in transformation map sent to TensorView reorder.");
// END VALIDATION CHECKS
std::vector<int> new2old(ndims, -1);
// Go through each old and new position, make sure they're within [0, ndims)
for (std::pair<int, int> elem : old2new) {
int old_pos = elem.first;
int new_pos = elem.second;
new2old[new_pos] = old_pos;
}
// old_positions that already have a new position
std::set<int> old_positions(new2old.begin(), new2old.end());
old_positions.erase(-1);
// All available new positions
std::set<int> all_positions;
for (decltype(ndims) i{0}; i < ndims; i++)
all_positions.insert(i);
// Check what positions haven't been specified.
std::set<int> positions_left;
std::set_difference(
all_positions.begin(),
all_positions.end(),
old_positions.begin(),
old_positions.end(),
std::inserter(positions_left, positions_left.end()));
// Fill in positions that weren't specified, in relative order,
// in empty spots in the set of new positions.
// new2old[new_position] = old_position
auto it = positions_left.begin(); // old positions left
std::transform(
new2old.begin(), new2old.end(), new2old.begin(), [&it](int i) -> int {
return i == -1 ? *it++ : i;
});
std::vector<IterDomain*> reordered_domain;
std::transform(
new2old.begin(),
new2old.end(),
std::back_inserter(reordered_domain),
[dom](int i) -> IterDomain* { return dom[i]; });
return reordered_domain;
}
std::vector<IterDomain*> TensorDomain::noReductions(
const std::vector<IterDomain*>& td) {
size_t size_out = 0;
for (auto id : td)
if (!id->isReduction())
size_out++;
std::vector<IterDomain*> noReductionDomain(size_out);
int it = 0;
for (auto id : td)
if (!id->isReduction())
noReductionDomain[it++] = id;
return noReductionDomain;
}
std::vector<IterDomain*> TensorDomain::noBroadcasts(
const std::vector<IterDomain*>& td) {
size_t size_out = 0;
for (auto id : td)
if (!id->isBroadcast())
size_out++;
std::vector<IterDomain*> noBroadcastDomain(size_out);
int it = 0;
for (auto id : td)
if (!id->isBroadcast())
noBroadcastDomain[it++] = id;
return noBroadcastDomain;
}
bool TensorDomain::hasBroadcast(const std::vector<IterDomain*>& td) {
for (auto id : td)
if (id->isBroadcast())
return true;
return false;
}
bool TensorDomain::hasReduction(const std::vector<IterDomain*>& td) {
for (auto id : td)
if (id->isReduction())
return true;
return false;
}
std::vector<std::pair<int, int>> TensorDomain::mapDomainPandC(
const std::vector<IterDomain*>& producer,
const std::vector<IterDomain*>& consumer) {
std::vector<std::pair<int, int>> dom_map;
size_t itc = 0, itp = 0;
while (itc < consumer.size() && itp < producer.size()) {
if (consumer[itc]->isBroadcast() && !producer[itp]->isBroadcast()) {
itc++;
continue;
}
if (producer[itp]->isReduction()) {
itp++;
continue;
}
dom_map.emplace_back(std::make_pair(itp, itc));
itc++;
itp++;
}
return dom_map;
}
std::vector<std::pair<IterDomain*, IterDomain*>> TensorDomain::mapRootPandC(
const TensorDomain* producer,
const TensorDomain* consumer) {
auto consumer_root = consumer->getRootDomain();
auto producer_root = producer->getMaybeRFactorDomain();
std::vector<std::pair<IterDomain*, IterDomain*>> root_id_map;
for (const auto& m : mapDomainPandC(producer_root, consumer_root)) {
auto producer_axis = producer_root[m.first];
auto consumer_axis = consumer_root[m.second];
root_id_map.emplace_back(std::make_pair(producer_axis, consumer_axis));
}
return root_id_map;
}
std::unordered_map<IterDomain*, IterDomain*> TensorDomain::mapRootCtoP(
const TensorDomain* consumer,
const TensorDomain* producer,
const std::unordered_set<IterDomain*>& consumer_root_dims_to_map) {
std::unordered_map<IterDomain*, IterDomain*> root_id_map;
for (const auto& kv : mapRootPandC(producer, consumer)) {
auto producer_axis = kv.first;
auto consumer_axis = kv.second;
if (consumer_root_dims_to_map.find(consumer_axis) !=
consumer_root_dims_to_map.end()) {
root_id_map[consumer_axis] = producer_axis;
}
}
return root_id_map;
}
std::unordered_map<IterDomain*, IterDomain*> TensorDomain::mapRootPtoC(
const TensorDomain* producer,
const TensorDomain* consumer,
const std::unordered_set<IterDomain*>& producer_maybe_rfactor_dims_to_map) {
std::unordered_map<IterDomain*, IterDomain*> root_id_map;
for (const auto& kv : mapRootPandC(producer, consumer)) {
auto producer_axis = kv.first;
auto consumer_axis = kv.second;
if (producer_maybe_rfactor_dims_to_map.find(producer_axis) !=
producer_maybe_rfactor_dims_to_map.end()) {
root_id_map[producer_axis] = consumer_axis;
}
}
return root_id_map;
}
// pair is in order where second is the consumer of first
std::pair<TensorDomain*, TensorDomain*> TensorDomain::rFactor(
const std::vector<int>& axes_) {
TORCH_INTERNAL_ASSERT(nDims() > 0, "Tried to rFactor a 0-dim domain");
std::vector<int> axes(axes_.size());
auto ndims = nDims();
std::transform(axes_.begin(), axes_.end(), axes.begin(), [ndims](int i) {
return i < 0 ? i + ndims : i;
});
TORCH_CHECK(
std::none_of(
axes.begin(),
axes.end(),
[ndims](int i) { return i < 0 || (unsigned int)i >= ndims; }),
"RFactor axes less than 0 or >= ndims.");
// We might be able to lift this constraint in some instances, but needs more
// investigation.
TORCH_CHECK(
!hasRFactor(), "Cannot call rfactor on the same tensor domain twice.");
std::unordered_set<int> axes_set(axes.begin(), axes.end());
bool rfactor_found = false;
bool reduction_found = false;
for (decltype(nDims()) i{0}; i < nDims(); i++) {
if (axis(i)->isReduction()) {
if (axes_set.find(i) != axes_set.end()) {
rfactor_found = true;
} else {
reduction_found = true;
}
}
}
TORCH_CHECK(
rfactor_found && reduction_found,
"Invalid rfactor found, rfactor must be provided at least one reduction axis, but not all reduction axes.");
return std::pair<TensorDomain*, TensorDomain*>{
TransformRFactor::runReplay(this, axes),
TransformRFactor::runReplay2(this, axes)};
}
namespace {
//! Container class DisjointSet models equivalence relationships
//!
//! Each instance of this class keeps a set of equivalent classes
//! DisjointSet::join(a,b) makes the full class of a and b equivalent
//! DisjointSet::areEqual(a,b) checks if a and b belong same class
//!
//! \note The template type T is assumed to be hashable
template <typename T>
class DisjointSet {
public:
DisjointSet() = default;
//! Joins the equivalent class that a and b belong to
//! areEqual(a',b') will be true for each a'=a and b'=b
//!
//! \param a An element from a equivalent class
//! will create a new equivalent class if a does
//! not belong to any
//! \param b An element from another equivalent class
//! will create a new equivalent class if b does
//! not belong to any
void join(T a, T b) {
// cases where either of the quiv class doesn't exist
if (!entry_map.count(a) && !entry_map.count(b)) {
createPoint(a);
entry_map[b] = fixedPoint(a);
} else if (!entry_map.count(a)) {
entry_map[a] = fixedPoint(b);
} else if (!entry_map.count(b)) {
entry_map[b] = fixedPoint(a);
} else {
// case where both equiv classes exist and need to join
const int i0 = fixedPoint(a);
const int i1 = fixedPoint(b);
int new_parent = 0;
int new_child = 0;
// Either order here is correct but joining larger class to smaller class
// tend to be faster
std::tie(new_parent, new_child) = (weights[i0] < weights[i1])
? std::make_pair(i0, i1)
: std::make_pair(i1, i0);
weights[new_parent] += weights[new_child];
set_map[new_child] = new_parent;
}
}
//! Checks if a and b belong to the same equivalent class
//!
//! \param a An element from a equivalent class
//! \param b An element from another equivalent class
//! \returns Boolean value representing if a and b are
//! recorded to be in the same equivalent class
//! will return false if any of a or b doesn't
//! have an equivalent class recorded
bool areEquivalent(T a, T b) const {
if (!entry_map.count(a) || !entry_map.count(b)) {
return false;
}
return fixedPoint(a) == fixedPoint(b);
}
private:
// Internal fixed point implementation:
// Returns the equivalent class that e belongs to
int fixedPoint(int e) const {
TORCH_INTERNAL_ASSERT(static_cast<int>(set_map.size()) > e);
while (set_map[e] != e) {
// Chasing to fixed point
e = set_map[e];
}
return e;
}
//! Utility to check the class i belongs to:
//!
//! Will create a new class if no match seen
//! \param e element e to find the equiv class for
//! \returns the equivalent class that e belongs to
//!
int fixedPoint(T e) const {
// Handles case when i doesn't have an equivalence class
TORCH_INTERNAL_ASSERT(entry_map.count(e));
// Use fixed point as a representation for the equiv class
return fixedPoint(entry_map.at(e));
}
//! Utility to create a new equiv class for i
//
//! \param i Element i to create the equiv class for
void createPoint(T i) {
entry_map[i] = next_index_;
set_map.push_back(next_index_++);
weights.push_back(1);
}
private:
// Internal representation of the equivalence class as integers
// set_map implements the "parent" relationship
std::vector<int> set_map;
// Weights is used for preliminary perf optimization
std::vector<int> weights;
// Map the input of type T to its equivalence class
std::unordered_map<T, int> entry_map;
// Running counter for generating new index when
// Creating new equiv classes
int next_index_ = 0;
};
//! Concretize broadcast axes, i.e. identifying a non-broadcast
//! IterDomain that the broadcast IterDomain can map to.
//!
//! This traversal processes root domains only, concretization works by
//! inspecting pointwise ops, e.g. : T2 [i0,i1] = T1[i0,B0] + T0[i0,i1]
//! will concretize axis B0 to i1
//!
class ConcretizeDomain : private BackwardVisitor {
public:
//! Traverses the graph backward from outputs
//! to identify all concretizing opportunities
//!
explicit ConcretizeDomain(Fusion* fusion) {
traverseFrom(fusion, fusion->outputs(), false);
}
//! API call to run the concretize pass and return the
//! axis that bcast_dom concretizes to
//!
static const IterDomain* getConcreteDomain(IterDomain* bcast_dom) {
ConcretizeDomain cd(bcast_dom->fusion());
// Remove this assertion once we support broadcast on output
TORCH_INTERNAL_ASSERT(cd.canConcretize(bcast_dom));
return cd.concretized(bcast_dom);
}
// Returns true if either id is not a broadcast or
// the traversal has found a concretized axis for id
bool canConcretize(IterDomain* id) const {
return !id->isBroadcast() || bcast_domain_map_.count(id);
}
// Returns the concretized id recorded from traversal
IterDomain* concretized(IterDomain* id) const {
TORCH_INTERNAL_ASSERT(canConcretize(id));
if (!id->isBroadcast()) {
return id;
}
return bcast_domain_map_.at(id);
}
private:
// Utility to inspect a pointwise operator and
// record concretize opportunities
void concretizePwOp(Expr* e);
// Utility to record new concretize opportunity
void concretizeTo(IterDomain* id, IterDomain* To) {
TORCH_INTERNAL_ASSERT(id->isBroadcast() && !To->isBroadcast());
bcast_domain_map_[id] = concretized(To);
}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Woverloaded-virtual"
void handle(ReductionOp* rop) override {
concretizePwOp(rop);
}
void handle(UnaryOp* uop) override {
concretizePwOp(uop);
}
void handle(BinaryOp* bop) override {
concretizePwOp(bop);
}
void handle(TernaryOp* top) override {
concretizePwOp(top);
};
#pragma clang diagnostic pop
private:
using MapType = std::unordered_map<IterDomain*, IterDomain*>;
MapType bcast_domain_map_;
};
void ConcretizeDomain::concretizePwOp(Expr* e) {
TensorView* tv = *ir_utils::filterByType<TensorView>(e->outputs()).begin();
std::vector<IterDomain*> io = tv->getRootDomain();
for (auto* i : ir_utils::filterByType<TensorView>(e->inputs())) {
std::vector<IterDomain*> ii =
TensorDomain::noReductions(i->getMaybeRFactorDomain());
TORCH_INTERNAL_ASSERT(ii.size() == io.size());
for (size_t it = 0; it < ii.size(); it++) {
if (!canConcretize(io[it]))
continue;
if (!canConcretize(ii[it]))
concretizeTo(ii[it], concretized(io[it]));
}
}
}
//! Models equivalence provable by the graph
//!
//! This traversal processes root domains only,
//! equalities , e.g. :
//! T2 [i0,i1] = T1[i2,i3] + T0[i4,i5]
//! will prove that i2 and i4 are equal in the sense that
//! i2.start = i4.start, i2.extent = i4.extent
//! Depends on ConcretizeDomain, and equalities involving
//! broadcast domains are defined based on the concretized version
class ProveValEqual : private IterVisitor {
public:
explicit ProveValEqual(Fusion* fusion) : cd_(fusion) {
traverseFrom(fusion, fusion->outputs(), false);
}
//! Checks if two scalars are equal
//!
//! First checks if ScalarCheck has them equal,
//! next try to prove them equal from
//! the graph_traversal result
//!
//! \param a A symbolic value
//! \param b Another value from the same fusion
//! \returns Boolean representing if they are proven to be
//! equal based on scalar check and graph traversal
bool areEqual(Val* a, Val* b) const {
if (ScalarCheck::sameAs(a, b)) {
return true;
}
if (eq_set_.areEquivalent(a, b)) {
return true;
}
return false;
}
//! Checks if two iterdomains are equal
//!
//! Equality defined as equal start and equal extent
//! true means a and b are equal
//! false only means that they cannot be proven equal based
//! on scalar check and graph traversal
//!
//! \param a An iterdomain
//! \param b Another iterdomain from the same fusion
//! \returns Boolean representing if they are proven to be
//! equivalent in the sense that they have equal
//! start and extent
bool areEquivalent(IterDomain* a, IterDomain* b) const {
if (a->sameAs(b)) {
return true;
}
// Abort on un-concretized domains, this can appear once we
// allow broadcast on fusion output
if (!cd_.canConcretize(a) || !cd_.canConcretize(b)) {
return false;
}
auto ac = cd_.concretized(a);
auto bc = cd_.concretized(b);
return areEqual(ac->start(), bc->start()) &&
areEqual(ac->rawExtent(), bc->rawExtent());
}
private:
// Utility class to record new equality found
void proveId(IterDomain* a, IterDomain* b) {
if (!a->sameAs(b)) {
eq_set_.join(a->start(), b->start());
eq_set_.join(a->rawExtent(), b->rawExtent());
}
}
// Inspect a pointwise op and record the identified equality
void provePwOp(Expr* e) {
TensorView* tv = *ir_utils::filterByType<TensorView>(e->outputs()).begin();
std::vector<IterDomain*> io = tv->getRootDomain();
// Record equalities from output to all the inputs
// ignores un-concretizable broadcasts
for (auto* i : ir_utils::filterByType<TensorView>(e->inputs())) {
std::vector<IterDomain*> ii =
TensorDomain::noReductions(i->getMaybeRFactorDomain());
for (size_t it = 0; it < ii.size(); it++)
if (cd_.canConcretize(ii[it]) && cd_.canConcretize(io[it]))
proveId(cd_.concretized(ii[it]), cd_.concretized(io[it]));
}
}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Woverloaded-virtual"
void handle(ReductionOp* rop) override {
provePwOp(rop);
}
void handle(UnaryOp* uop) override {
provePwOp(uop);
}
void handle(BinaryOp* bop) override {
provePwOp(bop);
}
void handle(TernaryOp* top) override {
provePwOp(top);
}
#pragma clang diagnostic pop
private:
ConcretizeDomain cd_;
DisjointSet<const Val*> eq_set_;
};
} // namespace
// API call to return the concretized axis of a broadcast axis
const IterDomain* IterDomain::concretizeDomain(IterDomain* bcast_dom) {
return ConcretizeDomain::getConcreteDomain(bcast_dom);
}
// API call to check if two IterDomains are equal
// checks start and extent, contains both scalar check and graph traversal
// broadcast domains are concretized before comparing
bool IterDomain::proveEquivalent(IterDomain* a, IterDomain* b) {
TORCH_INTERNAL_ASSERT(a->fusion() == b->fusion());
ProveValEqual pve(a->fusion());
return pve.areEquivalent(a, b);
}
Split::Split(
IterDomain* _outer,
IterDomain* _inner,
IterDomain* _in,
Val* _factor)
: Expr(ExprType::Split),
outer_{_outer},
inner_{_inner},
in_{_in},
factor_{_factor} {
TORCH_INTERNAL_ASSERT(
factor_->isAnInt(),
"Attempted to create a Split node with a non-integer factor.");
addOutput(_outer);
addOutput(_inner);
addInput(_in);
name_ = FusionGuard::getCurFusion()->registerExpr(this);
}
Split::Split(const Split* src, IrCloner* ir_cloner)
: Expr(src, ir_cloner),
outer_(ir_cloner->clone(src->outer_)),
inner_(ir_cloner->clone(src->inner_)),
in_(ir_cloner->clone(src->in_)),
factor_(ir_cloner->clone(src->factor_)) {}
bool Split::sameAs(const Split* const other) const {
return (
outer()->sameAs(other->outer()) && inner()->sameAs(other->inner()) &&
in()->sameAs(other->in()) && factor()->sameAs(other->factor()));
}
Merge::Merge(IterDomain* _out, IterDomain* _outer, IterDomain* _inner)
: Expr(ExprType::Merge), out_{_out}, outer_{_outer}, inner_{_inner} {
addOutput(_out);
addInput(_outer);
addInput(_inner);
name_ = FusionGuard::getCurFusion()->registerExpr(this);
}
Merge::Merge(const Merge* src, IrCloner* ir_cloner)
: Expr(src, ir_cloner),
out_(ir_cloner->clone(src->out_)),
outer_(ir_cloner->clone(src->outer_)),
inner_(ir_cloner->clone(src->inner_)) {}
bool Merge::sameAs(const Merge* const other) const {
return (
out()->sameAs(other->out()) && outer()->sameAs(other->outer()) &&
inner()->sameAs(other->inner()));
}
NamedScalar::NamedScalar(const NamedScalar* src, IrCloner* ir_cloner)
: Val(src, ir_cloner), name_(src->name_) {}
NamedScalar* NamedScalar::getParallelDim(ParallelType p_type) {
std::string parallel_dim = stringifyThreadSize(p_type);
return new NamedScalar(parallel_dim, DataType::Int);
}
NamedScalar* NamedScalar::getParallelIndex(ParallelType p_type) {
std::string parallel_ind = stringifyThread(p_type);
return new NamedScalar(parallel_ind, DataType::Int);
}
c10::optional<ParallelType> NamedScalar::getParallelDim() const {
if (stringifyThreadSize(ParallelType::TIDx).compare(name()) == 0) {
return c10::optional<ParallelType>(ParallelType::TIDx);
} else if (stringifyThreadSize(ParallelType::TIDy).compare(name()) == 0) {
return c10::optional<ParallelType>(ParallelType::TIDy);
} else if (stringifyThreadSize(ParallelType::TIDz).compare(name()) == 0) {
return c10::optional<ParallelType>(ParallelType::TIDz);
} else if (stringifyThreadSize(ParallelType::BIDx).compare(name()) == 0) {
return c10::optional<ParallelType>(ParallelType::BIDx);
} else if (stringifyThreadSize(ParallelType::BIDy).compare(name()) == 0) {
return c10::optional<ParallelType>(ParallelType::BIDy);
} else if (stringifyThreadSize(ParallelType::BIDz).compare(name()) == 0) {
return c10::optional<ParallelType>(ParallelType::BIDz);
}
return c10::nullopt;
}
c10::optional<ParallelType> NamedScalar::getParallelIndex() const {
if (stringifyThread(ParallelType::TIDx).compare(name()) == 0) {
return c10::optional<ParallelType>(ParallelType::TIDx);
} else if (stringifyThread(ParallelType::TIDy).compare(name()) == 0) {
return c10::optional<ParallelType>(ParallelType::TIDy);
} else if (stringifyThread(ParallelType::TIDz).compare(name()) == 0) {
return c10::optional<ParallelType>(ParallelType::TIDz);
} else if (stringifyThread(ParallelType::BIDx).compare(name()) == 0) {
return c10::optional<ParallelType>(ParallelType::BIDx);
} else if (stringifyThread(ParallelType::BIDy).compare(name()) == 0) {
return c10::optional<ParallelType>(ParallelType::BIDy);
} else if (stringifyThread(ParallelType::BIDz).compare(name()) == 0) {
return c10::optional<ParallelType>(ParallelType::BIDz);
}
return c10::nullopt;
}
} // namespace fuser
} // namespace jit
} // namespace torch
|