1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/type.h>
namespace torch {
namespace jit {
namespace fuser {
/* ITER VISITOR */
namespace {
// Remove any stmt in stmts that is in visited
void remove_visited(
std::vector<Statement*>& stmts,
const std::unordered_set<Statement*>& visited) {
std::deque<std::vector<Statement*>::iterator> to_erase;
for (auto it = stmts.begin(); it != stmts.end(); it++) {
if (visited.find(*it) != visited.end()) {
to_erase.push_back(it);
}
}
while (!to_erase.empty()) {
stmts.erase(to_erase.back());
to_erase.pop_back();
}
}
} // namespace
// Implementation details:
// We start with an entry in stmt_stack that is the outputs we want to
// process. We cannot process these outputs untill all Stmts in their history
// have been processed, as those Stmts contain all dependencies to produce
// these values. What we will do is traverse towards inputs until we hit a
// leaf node. Once we hit a leaf node that node will be visited, then we will
// take them off the stack. Once a stack entry is empty, know everything
// needed to be visited to visit stmt_stack.back().back(). We then visit that
// node, make it as visisted and remove it from the stack.
//
// To prevent traversing all paths through a DAG (unless we want to) we have a
// function to remove visited nodes from being re-added to the stack
// (remove_visited).
void IterVisitor::traverseFrom(
Fusion* fusion,
const std::vector<Val*>& from,
bool traverseAllPaths) {
FusionGuard fg(fusion);
std::unordered_set<Statement*> visited;
stmt_stack.clear();
stmt_stack.emplace_back(from.rbegin(), from.rend());
bool all_inputs_visited = false;
while (!stmt_stack.empty()) {
auto& current_inputs = stmt_stack.back();
// If current_inputs is empty, pop a level of the stmt_stack, mark the level
// we pop to as having all inputs processed, the layer we processed were all
// added inputs required for that Stmt.
if (current_inputs.empty()) {
stmt_stack.pop_back();
all_inputs_visited = true;
continue;
}
// Get the very last entry in the stack to process
const auto& stmt = current_inputs.back();
// If we just poped a stmt_stack level, we can finally visit it!
if (all_inputs_visited) {
// Mark visited
visited.insert(stmt);
// Actually visit stmt
handle(stmt);
// Remove last value just visited
current_inputs.pop_back();
// Mark that we need to visit a new Stmt's.
all_inputs_visited = false;
} else {
// We're not ready to process this node, so add all its inputs to be
// checked Visit input nodes.
auto next_stmts = next(stmt);
// We may want to retraverse nodes, in that case revisit everything!
if (!traverseAllPaths) {
// If we don't want to retraverse, remove nodes we already visisted.
remove_visited(next_stmts, visited);
}
if (next_stmts.empty()) {
// If there's nothing to visit because it was all already visited, mark
// to process
all_inputs_visited = true;
} else {
// Add all these new stmts to visit to the stack.
stmt_stack.emplace_back(next_stmts.rbegin(), next_stmts.rend());
// We have new things to visit,
all_inputs_visited = false;
}
}
}
}
void IterVisitor::traverse_(
Fusion* fusion,
bool from_outputs_only,
bool traverse_all_paths) {
FusionGuard fg(fusion);
if (from_outputs_only) {
auto term_val_outs = fusion->getTerminatingOutputs();
if (!term_val_outs.empty()) {
traverseFrom(fusion, term_val_outs, traverse_all_paths);
}
return;
}
std::vector<Val*> leaves;
// Search for Vals with no uses (output edges)
for (Val* val : fusion->deterministic_vals())
if (!fusion->used(val)) {
leaves.push_back(val);
}
if (!leaves.empty()) {
traverseFrom(fusion, leaves, traverse_all_paths);
}
}
void IterVisitor::traverse(Fusion* fusion, bool from_outputs_only) {
traverse_(fusion, from_outputs_only, false);
}
void IterVisitor::traverseAllPaths(Fusion* fusion, bool from_outputs_only) {
traverse_(fusion, from_outputs_only, true);
}
namespace {
// Expr sort will take a fusion and return a topologically sorted list of
// expressions.
class Inputs : public IterVisitor {
private:
std::unordered_set<Val*> inputs;
void handle(Val* val) override {
if (val->getOrigin() == nullptr) {
inputs.emplace(val);
}
}
public:
static std::unordered_set<Val*> getInputs(const std::vector<Val*>& of) {
if (of.empty()) {
return std::unordered_set<Val*>();
}
Inputs inps;
inps.traverseFrom(of[0]->fusion(), of);
return inps.inputs;
}
};
} // namespace
std::unordered_set<Val*> IterVisitor::getInputsTo(
const std::vector<Val*>& vals) {
return Inputs::getInputs(vals);
}
namespace {
class AllVals : public IterVisitor {
private:
std::unordered_set<Val*> vals;
void handle(Val* val) final {
vals.emplace(val);
}
public:
// Return all values in history of all values in from
static std::unordered_set<Val*> get(
Fusion* fusion,
const std::vector<Val*>& from) {
AllVals av;
av.traverseFrom(fusion, from, false);
return av.vals;
}
};
} // namespace
/* BACKWARDS VISITOR */
std::vector<Statement*> BackwardVisitor::next(Statement* stmt) {
if (stmt->isVal()) {
return next(stmt->as<Val>());
} else if (stmt->isExpr()) {
return next(stmt->as<Expr>());
} else {
TORCH_INTERNAL_ASSERT(
false, "BackwardVisitor could not detect type in next_dispatch.");
}
}
std::vector<Statement*> BackwardVisitor::next(Expr* expr) {
return std::vector<Statement*>(
expr->outputs().begin(), expr->outputs().end());
}
std::vector<Statement*> BackwardVisitor::next(Val* val) {
// Going to sort based on relative topological position
std::map<size_t, Statement*> exprs;
for (auto expr : FusionGuard::getCurFusion()->unordered_uses(val)) {
// Make sure it's an expr we can traverse
if (traversal_exprs_.find(expr) != traversal_exprs_.end()) {
exprs[traversal_exprs_[expr]] = expr;
}
}
std::vector<Statement*> next_stmts(exprs.size());
std::transform(
exprs.begin(),
exprs.end(),
next_stmts.begin(),
[](std::pair<size_t, Statement*> pair) { return pair.second; });
return next_stmts;
}
void BackwardVisitor::traverseFrom(
Fusion* fusion,
const std::vector<Val*>& from,
bool traverseAllPaths) {
FusionGuard fg(fusion);
// Reset members
stmt_stack_.clear();
traversal_exprs_.clear();
if (from.empty()) {
return;
}
auto vals = AllVals::get(fusion, from);
auto exprs = ExprSort::getExprs(fusion, from);
{
size_t pos = 0;
for (auto expr : exprs)
traversal_exprs_[expr] = pos++;
}
// All stmts we've called handle on
std::unordered_set<Statement*> visited_stmts_;
for (auto traversal_pair : traversal_exprs_) {
for (auto out : traversal_pair.first->outputs()) {
TORCH_INTERNAL_ASSERT(
vals.find(out) != vals.end(),
"Invalid backward traversal found. Some output paths were not provided.");
}
}
auto inputs = InputsOf::getInputsTo(from);
stmt_stack_.emplace_back(inputs.begin(), inputs.end());
// The rest is basically copy-pasted from IterVitor:
while (!stmt_stack_.empty()) {
auto next_stmts = next(stmt_stack_.back().back());
// Remove statements we already visited if we're not traversing all paths
if (!traverseAllPaths) {
remove_visited(next_stmts, visited_stmts_);
}
// Traverse down until we get to a leaf
while (!next_stmts.empty()) {
stmt_stack_.emplace_back(next_stmts.rbegin(), next_stmts.rend());
next_stmts = next(stmt_stack_.back().back());
// Remove statements we already visited if we're not traversing all paths
if (!traverseAllPaths) {
remove_visited(next_stmts, visited_stmts_);
}
}
// Traverse back up
// Mark visited
visited_stmts_.emplace(stmt_stack_.back().back());
// Handle
handle(stmt_stack_.back().back());
// Remove
stmt_stack_.back().pop_back();
while (!stmt_stack_.empty() && stmt_stack_.back().empty()) {
stmt_stack_.pop_back();
if (!stmt_stack_.empty()) {
// Mark visited
visited_stmts_.emplace(stmt_stack_.back().back());
// Handle
handle(stmt_stack_.back().back());
// Remove
stmt_stack_.back().pop_back();
}
}
}
}
/* DEPENDENCY CHECKING */
namespace {
// Looks for and returns all values in between dependencies and vals, including
// them.
struct Dependencies : public IterVisitor {
std::unordered_set<Val*> dependencies_;
std::unordered_set<Val*> vals_;
std::vector<Statement*> next(Val* v) override {
if (dependencies_.find(v) != dependencies_.end())
return std::vector<Statement*>();
return IterVisitor::next(v);
}
void handle(Val* val) override {
vals_.emplace(val);
}
Dependencies(
std::unordered_set<Val*> _dependencies,
const std::vector<Val*>& of)
: dependencies_(std::move(_dependencies)) {
traverseFrom(of[0]->fusion(), of, false);
};
public:
static std::unordered_set<Val*> getAllVals(
const std::unordered_set<Val*>& dependencies,
const std::vector<Val*>& of) {
if (of.empty()) {
return std::unordered_set<Val*>();
}
Dependencies deps(dependencies, of);
return deps.vals_;
}
};
// Looks for and returns all output values with dependencies on `of`.
struct FindOutputs : public IterVisitor {
const std::unordered_set<Val*>& of_;
std::unordered_set<Val*> outs_;
void handle(Val* val) override {
if (of_.find(val) != of_.end()) {
Statement* out_stmt = stmt_stack.front().back();
if (out_stmt->isVal()) {
auto out_val = out_stmt->as<Val>();
if (of_.find(out_val) == of_.end()) {
outs_.emplace(out_val);
}
}
}
}
FindOutputs(const std::unordered_set<Val*>& _of) : of_(_of) {
auto fusion = (*of_.begin())->fusion();
traverseFrom(fusion, fusion->outputs(), false);
};
static std::unordered_set<Val*> getAllOutputsOf(
const std::unordered_set<Val*>& of) {
if (of.empty()) {
return std::unordered_set<Val*>();
}
FindOutputs finder(of);
return finder.outs_;
}
};
class DependencyChains : public IterVisitor {
public:
std::deque<std::deque<Val*>> dep_chains;
bool is_dependency = false;
std::unordered_set<Val*> dependencies_;
void handle(Val* val) override {
if (dependencies_.find(val) != dependencies_.end()) {
is_dependency = true;
std::deque<Val*> deps;
for (auto stack : stmt_stack) {
if (stack.back()->isVal()) {
deps.push_back(stack.back()->as<Val>());
}
}
// Order as dependency -> of
dep_chains.emplace_back(deps.rbegin(), deps.rend());
}
}
DependencyChains(Val* _dependency, Val* _of, bool all_chains_ = false)
: dependencies_({_dependency}) {
traverseFrom(_of->fusion(), {_of}, all_chains_);
}
DependencyChains(Val* _dependency, bool all_chains_ = false)
: dependencies_({_dependency}) {
if (all_chains_) {
traverseAllPaths(_dependency->fusion(), false);
} else {
traverse(_dependency->fusion(), false);
}
}
DependencyChains(
std::unordered_set<Val*> _dependencies,
bool all_chains_ = false)
: dependencies_(std::move(_dependencies)) {
if (dependencies_.empty()) {
return;
}
if (all_chains_) {
traverseAllPaths((*dependencies_.begin())->fusion(), false);
} else {
traverse((*dependencies_.begin())->fusion(), false);
}
}
static std::deque<Val*> getDependencyChain(Val* dependency, Val* of) {
DependencyChains dp(dependency, of, false);
if (dp.dep_chains.empty()) {
return std::deque<Val*>();
}
return dp.dep_chains[0];
}
// I don't think this is actually hooked up, but leaving for now.
static std::deque<std::deque<Val*>> getDependencyChains(
Val* dependency,
Val* of) {
DependencyChains dp(dependency, of, true);
if (dp.dep_chains.empty()) {
return std::deque<std::deque<Val*>>();
}
return dp.dep_chains;
}
static std::deque<std::deque<Val*>> getAllUseChains(Val* dependency) {
DependencyChains dp(dependency, true);
if (dp.dep_chains.empty()) {
return std::deque<std::deque<Val*>>();
}
return dp.dep_chains;
}
static std::deque<std::deque<Val*>> getAllUseChains(
const std::unordered_set<Val*>& dependencies) {
DependencyChains dp(dependencies, true);
if (dp.dep_chains.empty()) {
return std::deque<std::deque<Val*>>();
}
return dp.dep_chains;
}
};
} // namespace
bool DependencyCheck::isDependencyOf(Val* dependency, Val* of) {
return !DependencyChains::getDependencyChain(dependency, of).empty();
}
std::deque<Val*> DependencyCheck::getSingleDependencyChain(
Val* dependency,
Val* of) {
return DependencyChains::getDependencyChain(dependency, of);
}
std::deque<std::deque<Val*>> DependencyCheck::getAllDependencyChains(
Val* dependency,
Val* of) {
return DependencyChains::getDependencyChains(dependency, of);
}
std::deque<std::deque<Val*>> DependencyCheck::getAllUseChains(Val* producer) {
return DependencyChains::getAllUseChains(producer);
}
std::unordered_set<Val*> DependencyCheck::getAllValsBetween(
const std::unordered_set<Val*>& dependencies,
const std::vector<Val*>& of) {
return Dependencies::getAllVals(dependencies, of);
}
std::unordered_set<Val*> DependencyCheck::getAllOutputsOf(
const std::unordered_set<Val*>& of) {
if (of.empty()) {
return std::unordered_set<Val*>();
}
FusionGuard fg((*of.begin())->fusion());
return FindOutputs::getAllOutputsOf(of);
}
void ExprSort::handle(Expr* expr) {
exprs.push_back(expr);
}
std::vector<Expr*> ExprSort::getExprs(Fusion* fusion, bool from_outputs_only) {
ExprSort es;
es.traverse(fusion, from_outputs_only);
return es.exprs;
}
std::vector<Expr*> ExprSort::getExprs(
Fusion* fusion,
const std::vector<Val*>& from) {
ExprSort es;
es.traverseFrom(fusion, from, false);
return es.exprs;
}
void InputsOf::handle(Val* v) {
if (FusionGuard::getCurFusion()->origin(v) == nullptr)
inputs.emplace(v);
}
std::unordered_set<Val*> InputsOf::output(Fusion* fusion, Val* output_) {
InputsOf io;
io.traverseFrom(FusionGuard::getCurFusion(), {output_}, false);
return io.inputs;
}
} // namespace fuser
} // namespace jit
} // namespace torch
|