1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
#pragma once
#include <torch/csrc/WindowsTorchApiMacro.h>
#include <torch/csrc/jit/codegen/cuda/dispatch.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/type.h>
#include <deque>
#include <unordered_set>
#include <vector>
namespace torch {
namespace jit {
namespace fuser {
/*
* IterVisitor starts from leaf nodes, fusion outputs, or the provided values.
* It walks the DAG bacwkards from the starting nodes, to roots. Each node in
* the dag will be called with handle(Statement*) in topolgical order inputs of
* the fusion to outputs of the fusion.
*
* TODO: We may want a BFS version of this code to extract ILP, not implemented
* yet.
*
* TODO: We may want to have ordering of outputs to inputs. I'm not sure why we
* would want this, but seems like it would be a reasonable request.
*/
class TORCH_CUDA_API IterVisitor : public OptOutDispatch {
public:
virtual ~IterVisitor() = default;
IterVisitor() = default;
IterVisitor(const IterVisitor& other) = default;
IterVisitor& operator=(const IterVisitor& other) = default;
IterVisitor(IterVisitor&& other) = default;
IterVisitor& operator=(IterVisitor&& other) = default;
protected:
// Functions return nodes in reverse order to be added to the to_visit queue
// These functions will start at outputs and propagate up through the DAG
// to inputs based on depth first traversal. Next could be called on a node
// multiple times.
virtual std::vector<Statement*> next(Statement* stmt) {
if (stmt->isVal()) {
return next(stmt->as<Val>());
} else if (stmt->isExpr()) {
return next(stmt->as<Expr>());
} else {
TORCH_INTERNAL_ASSERT(
false, "IterVisitor could not detect type in next_dispatch.");
}
}
virtual std::vector<Statement*> next(Val* v) {
FusionGuard::getCurFusion()->assertInFusion(v, "Cannot traverse val, ");
if (FusionGuard::getCurFusion()->origin(v) != nullptr) {
return {FusionGuard::getCurFusion()->origin(v)};
}
return {};
}
virtual std::vector<Statement*> next(Expr* expr) {
FusionGuard::getCurFusion()->assertInFusion(expr, "Cannot traverse expr, ");
std::vector<Statement*> next_stmts{expr->inputs().begin(),
expr->inputs().end()};
return next_stmts;
}
// This handle functions is called on every Statement* in topological order,
// starting from outputs to inputs.
void handle(Statement* s) override {
OptOutDispatch::handle(s);
}
// This handle functions is called on every Expr* in topological order,
// starting from outputs to inputs.
void handle(Expr* e) override {
OptOutDispatch::handle(e);
}
// This handle functions is called on every Val* in topological order,
// starting from outputs to inputs.
void handle(Val* v) override {
OptOutDispatch::handle(v);
}
// The entire stack during traversal. stmt_stack.back().back() is the node
// that is being called in handle(). stmt_stack.back() contains siblings (not
// guarenteed to be all siblings throughout traversal). stmt_stack.front()
// contains the outputs we started with (not guarenteed to be all outputs
// throughout traversal).
std::vector<std::vector<Statement*>> stmt_stack;
// Statements to stop traversal on if they're hit (pretends they're leaf
// nodes in next)
std::unordered_set<Statement*> termination_stmts;
void traverse_(
Fusion* fusion,
bool from_outputs_only = false,
bool traverse_all_paths = false);
public:
// Starts at nodes provided in from, traverses from these nodes to inputs.
// Calls handle on all Statement*s in topological sorted order.
// traverseAllPaths = false only call handle on each Statement* once
// traverseAllPaths = true traverses all paths from nodes in from to inputs.
// Handle on a Statement* for every path from "from" nodes, to inputs.
// to argument allows specification of nodes to stop at if we want to stop
// beffore we hit all leaf nodes. This can be helpful when we want to traverse
// from TensorView::domain(), to the rfactor domain, instead of root domain.
void traverseFrom(
Fusion* fusion,
const std::vector<Val*>& from,
bool traverseAllPaths = false);
// from_outputs_only = true start from outputs registered with fusion,
// from_outputs_only = false start from all leaf nodes. Calls into
// traverseFrom.
void traverse(Fusion* fusion, bool from_outputs_only = false);
// from_outputs_only = true start from outputs registered with fusion,
// from_outputs_only = false start from all leaf nodes. Calls into
// traverseFrom.
void traverseAllPaths(Fusion* fusion, bool from_outputs_only = false);
static std::unordered_set<Val*> getInputsTo(const std::vector<Val*>& vals);
};
/*
* Backward visitor IterVisitor calls handle in reverse order from outputs
* to inputs It would be really nice to unify this with IterVisitor, however,
* the challenge there is that we specify traversal from outputs towards inputs
* because it implicitly provides DCE. However, if users are not careful, they
* could miss necessary outputs to do a backward traversal.
*
* BackwardVisitor checks that all outputs of an Expr is visited before visiting
* the Expr. If we don't provide nodes to start from on all backward paths of
* those outputs we will never visit the Expr.
*
* The first step of BackwardVisitor is to make sure we've specified enough
* outputs to guarentee that we will traverse all outputs of all exprs during
* the backward traversal.
*/
class TORCH_CUDA_API BackwardVisitor : public OptOutDispatch {
public:
virtual ~BackwardVisitor() = default;
BackwardVisitor() = default;
BackwardVisitor(const BackwardVisitor& other) = default;
BackwardVisitor& operator=(const BackwardVisitor& other) = default;
BackwardVisitor(BackwardVisitor&& other) = default;
BackwardVisitor& operator=(BackwardVisitor&& other) = default;
// Functions return nodes in reverse order to be added to the to_visit queue
// These functions will start at outputs and propagate up through the DAG
// to inputs based on depth first traversal. Next could be called on a node
// multiple times.
virtual std::vector<Statement*> next(Statement* stmt);
virtual std::vector<Statement*> next(Expr* expr);
virtual std::vector<Statement*> next(Val* val);
// This handle functions is called on every Statement* in topological order,
// starting from outputs to inputs.
virtual void handle(Statement* stmt) override {
OptOutDispatch::handle(stmt);
}
// This handle functions is called on every Expr* in topological order,
// starting from outputs to inputs.
virtual void handle(Expr* expr) override {
OptOutDispatch::handle(expr);
}
// This handle functions is called on every Val* in topological order,
// starting from outputs to inputs.
virtual void handle(Val* val) override {
OptOutDispatch::handle(val);
}
// All exprs that need to be visited in this traversal. Labeled in topological
// order (size_t).
std::unordered_map<Expr*, size_t> traversal_exprs_;
// The entire stack during traversal. stmt_stack.back().back() is the node
// that is being called in handle(). stmt_stack.back() contains siblings (not
// guarenteed to be all siblings throughout traversal). stmt_stack.front()
// contains the inputs we started with (not guarenteed to be all outputs
// throughout traversal).
std::deque<std::deque<Statement*>> stmt_stack_;
// Starts at nodes provided in from, traverses from these nodes to inputs.
// Calls handle on all Statement*s in topological sorted order.
// traverseAllPaths = false only call handle on each Statement* once
// traverseAllPaths = true traverses all paths from nodes in from to inputs.
// Handle on a Statement* for every path from "from" nodes, to inputs.
void traverseFrom(
Fusion* fusion,
const std::vector<Val*>& from,
bool traverseAllPaths = false);
};
class TORCH_CUDA_API DependencyCheck {
public:
// Returns if "dependency" is a dependency of "of".
static bool isDependencyOf(Val* dependency, Val* of);
// Finds a Val* path from "of" to "dependency". Returns that path.
// deque.back() is "of", deque[0] is dependency if a chain exists.
static std::deque<Val*> getSingleDependencyChain(Val* dependency, Val* of);
// Finds all Val* paths from "of" to "dependency". Returns those paths.
// deque[i].back() is "of", and deque[i][0] is "dependency". Returns an
// empty deque if no dependency found.
static std::deque<std::deque<Val*>> getAllDependencyChains(
Val* dependency,
Val* of);
// Finds all Val* paths from all leaf nodes to "dependency". Returns those
// paths. deque[i].back() are leaf nodes, and deque[i][0] is "dependency".
// Returns an empty deque if there are no uses of dependency found.
static std::deque<std::deque<Val*>> getAllUseChains(Val* dependency);
// Grab all values that exist between and including provided vals
static std::unordered_set<Val*> getAllValsBetween(
const std::unordered_set<Val*>& dependencies,
const std::vector<Val*>& of);
// Return registered outputs of the fusion that are a dependency of any val of
static std::unordered_set<Val*> getAllOutputsOf(
const std::unordered_set<Val*>& of);
};
// Expr sort will take a fusion and return a topologically sorted list of
// expressions.
class ExprSort : public IterVisitor {
private:
std::vector<Expr*> exprs;
void handle(Expr* expr) override;
public:
static std::vector<Expr*> getExprs(Fusion* fusion, bool from_outputs_only);
static std::vector<Expr*> getExprs(
Fusion* fusion,
const std::vector<Val*>& from);
};
class InputsOf : public IterVisitor {
private:
std::unordered_set<Val*> inputs;
void handle(Val* v) final;
public:
static std::unordered_set<Val*> output(Fusion* fusion, Val* output_);
};
} // namespace fuser
} // namespace jit
} // namespace torch
|