File: lower2device.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (280 lines) | stat: -rw-r--r-- 8,851 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/lower_index.h>
#include <torch/csrc/jit/codegen/cuda/lower_insert_syncs.h>
#include <torch/csrc/jit/codegen/cuda/lower_loops.h>
#include <torch/csrc/jit/codegen/cuda/lower_thread_predicate.h>
#include <torch/csrc/jit/codegen/cuda/lower_unroll.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower_validation.h>

namespace torch {
namespace jit {
namespace fuser {

// TODO(kir): revisit this
thread_local GpuLower* active_gpu_lower = nullptr;

void GpuLower::replaceSymbolicSizes() {
  FUSER_PERF_SCOPE("replaceSymbolicSizes");

  kir::IrBuilder ir_builder(kernel());

  // Grab inputs and outputs
  // TODO: Only run through inputs for the size map, outputs don't actually set
  // any sizes of the problem.
  std::vector<TensorView*> inputs_and_outputs;
  for (auto val : fusion_->inputs()) {
    if (ir_utils::isTV(val)) {
      inputs_and_outputs.push_back(val->as<TensorView>());
    }
  }
  for (auto val : fusion_->outputs()) {
    if (ir_utils::isTV(val)) {
      inputs_and_outputs.push_back(val->as<TensorView>());
    }
  }

  // Run through inputs and outputs first. Since we're replacing full
  // tensorviews their names are going to change. We need  the new referenc
  // name for the inputs/outputs. This way we won't reference the wrong tensor
  // view. For example T0 may be translated to T9. We don't want our new
  // variable to be T0->size[...] we need it to be T9->size[...]
  for (TensorView* tv : inputs_and_outputs) {
    // Replace the domain with one based on Ti.size[j]
    std::vector<IterDomain*> new_domain_iters;
    const std::vector<IterDomain*>& root_td = tv->getRootDomain();

    size_t dim = 0;
    for (auto id : root_td) {
      const Val* orig_size = id->extent();

      // Output sizes could have reduction axes, which isn't what gets output.
      if (id->isReduction()) {
        continue;
      } else if (id->getIterType() == IterType::BroadcastWithoutStride) {
        continue;
      } else if (id->getIterType() == IterType::BroadcastWithStride) {
        dim++;
        continue;
      } else if (orig_size->isConstScalar()) {
        dim++;
        continue;
      }

      // TODO(kir): consider a different implementation which doesn't
      //  hijack the kir_map_
      if (kir_map_.find(orig_size) == kir_map_.end()) {
        std::stringstream ss;
        ss << "T" << tv->name() << ".size[" << dim++ << "]";
        kir_map_[orig_size] = ir_builder.create<kir::NamedScalar>(
            ss.str(), orig_size->getDataType().value());
      }
    }
  }
}

void GpuLower::lower() {
  FUSER_PERF_SCOPE("lower");

  TORCH_INTERNAL_ASSERT(fusion_ != nullptr);
  TORCH_INTERNAL_ASSERT(
      active_gpu_lower == nullptr, "Nested lowering passes are not supported");

  // TODO(kir): revisit this
  struct LowerGuard {
    LowerGuard(GpuLower* gpu_lower) {
      active_gpu_lower = gpu_lower;
    }
    ~LowerGuard() {
      active_gpu_lower = nullptr;
    }
  } lower_guard(this);

  FusionGuard fg(fusion_);

  // Start with a fresh kernel
  kernel_ = std::make_unique<Kernel>();

  // prepare for lowering
  validateIr(fusion_);
  replaceSymbolicSizes();

  // Compute thread predicates
  ThreadPredicateMap preds(fusion_);

  // Run our passes keeping the lowered expressions and forwarding them
  const auto lowered_exprs =
      LoopNestGenerator::loweredExprs(fusion_, preds, fusion_->exprs(true));

  const auto unrolled_loops =
      UnrollPass::runPass(fusion_, lowered_exprs, preds);

  // Insert SyncThreads at end of for-loop to avoid WAR race condition
  const auto sync_exprs = insertThreadSynchronization(fusion_, unrolled_loops);

  const auto indexed_loops =
      IndexLowering::getIndexedExprs(fusion_, sync_exprs);

  // We now have the lowered expressions, finalize the kernel IR
  kernel_->finalize(indexed_loops, preds);

  // Set the kernel inputs & outputs
  for (auto input : fusion_->inputs()) {
    kernel_->addInput(GpuLower::lowerValue(input));
  }
  for (auto output : fusion_->outputs()) {
    kernel_->addOutput(GpuLower::lowerValue(output));
  }
}

Kernel* GpuLower::kernel() const {
  TORCH_CHECK(kernel_);
  return kernel_.get();
}

// Maps Fusion IR nodes to the Kernel IR counterparts
//
// TODO(kir): this is a interim solution for easing the Kernel IR splitting
//
class TORCH_CUDA_API GpuLower::KernelIrMapper : private OptInConstDispatch {
 public:
  explicit KernelIrMapper(GpuLower* gpu_lower)
      : gpu_lower_(gpu_lower), ir_builder_(gpu_lower->kernel()) {}

  Val* lower(const Val* value) {
    const auto it = gpu_lower_->kir_map_.find(value);
    if (it != gpu_lower_->kir_map_.end()) {
      return it->second;
    } else {
      handle(value);
      const auto lowered_node = gpu_lower_->kir_map_[value];
      TORCH_CHECK(lowered_node != nullptr);
      TORCH_CHECK(kir::isLoweredVal(lowered_node));

      // Lower the arithmetic expression defining the value, if any
      if (value->isScalar()) {
        if (auto def = value->getOrigin()) {
          lowerDefinition(lowered_node, def);
        }
      }

      return lowered_node;
    }
  }

 private:
  // TODO(kir): rewrite this
  void lowerDefinition(Val* lowered_value, const Expr* def) {
    switch (def->type()) {
      case ExprType::UnaryOp: {
        const auto op = def->as<fuser::UnaryOp>();
        ir_builder_.create<kir::UnaryOp>(
            op->getUnaryOpType(), lowered_value, lower(op->in()));
        break;
      }
      case ExprType::BinaryOp: {
        const auto op = def->as<fuser::BinaryOp>();
        ir_builder_.create<kir::BinaryOp>(
            op->getBinaryOpType(),
            lowered_value,
            lower(op->lhs()),
            lower(op->rhs()));
        break;
      }
      case ExprType::TernaryOp: {
        const auto op = def->as<fuser::TernaryOp>();
        ir_builder_.create<kir::TernaryOp>(
            op->getTernaryOpType(),
            lowered_value,
            lower(op->in1()),
            lower(op->in2()),
            lower(op->in3()));
        break;
      }
      default:
        TORCH_CHECK(false, "Unexpected expression type");
    }
  }

  void handle(const Statement* node) override {
    OptInConstDispatch::handle(node);
  }

  void handle(const Val* node) override {
    OptInConstDispatch::handle(node);
  }

  void handle(const Expr* node) override {
    OptInConstDispatch::handle(node);
  }

  void handle(const TensorDomain* node) override {
    const auto lowered_node = ir_builder_.create<kir::TensorDomain>(node);
    TORCH_CHECK(gpu_lower_->kir_map_.insert({node, lowered_node}).second);
  }

  void handle(const IterDomain* node) override {
    const auto lowered_node = ir_builder_.create<kir::IterDomain>(node);
    TORCH_CHECK(gpu_lower_->kir_map_.insert({node, lowered_node}).second);
  }

  void handle(const TensorView* node) override {
    const auto lowered_node = ir_builder_.create<kir::TensorView>(node);
    TORCH_CHECK(gpu_lower_->kir_map_.insert({node, lowered_node}).second);
  }

  void handle(const Bool* node) override {
    const auto lowered_node = ir_builder_.create<kir::Bool>(node);
    TORCH_CHECK(gpu_lower_->kir_map_.insert({node, lowered_node}).second);
  }

  void handle(const Float* node) override {
    const auto lowered_node = ir_builder_.create<kir::Float>(node);
    TORCH_CHECK(gpu_lower_->kir_map_.insert({node, lowered_node}).second);
  }

  void handle(const Half* node) override {
    const auto lowered_node = ir_builder_.create<kir::Half>(node);
    TORCH_CHECK(gpu_lower_->kir_map_.insert({node, lowered_node}).second);
  }

  void handle(const Int* node) override {
    const auto lowered_node = ir_builder_.create<kir::Int>(node, false);
    TORCH_CHECK(gpu_lower_->kir_map_.insert({node, lowered_node}).second);
  }

  void handle(const NamedScalar* node) override {
    const auto lowered_node = ir_builder_.create<kir::NamedScalar>(
        node->name(), node->getDataType().value());
    TORCH_CHECK(gpu_lower_->kir_map_.insert({node, lowered_node}).second);
  }

 private:
  GpuLower* gpu_lower_ = nullptr;
  kir::IrBuilder ir_builder_;
};

Val* GpuLower::lowerValue(const Val* val) {
  TORCH_INTERNAL_ASSERT(!kir::isLoweredVal(val));
  TORCH_INTERNAL_ASSERT(active_gpu_lower != nullptr);
  KernelIrMapper kir_mapper(active_gpu_lower);
  return kir_mapper.lower(val);
}

Val* GpuLower::getLowerValue(const Val* val) {
  KernelIrMapper kir_mapper(this);
  return kir_mapper.lower(val);
}

GpuLower* GpuLower::current() {
  TORCH_INTERNAL_ASSERT(active_gpu_lower != nullptr);
  return active_gpu_lower;
}

} // namespace fuser
} // namespace jit
} // namespace torch