File: lower_index.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (310 lines) | stat: -rw-r--r-- 10,002 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/index_compute.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/predicate_compute.h>

#include <torch/csrc/jit/codegen/cuda/lower_index.h>

namespace torch {
namespace jit {
namespace fuser {

IndexLowering::IndexLowering() : ir_builder_(GpuLower::current()->kernel()) {}

Val* IndexLowering::lowerOperand(Val* op, Val* out) const {
  if (ir_utils::isTV(op)) {
    return Index::getProducerIndex(
        ir_utils::asTV(op),
        ir_utils::asTV(out),
        scope_utils::getLoops(active_scope_expr));
  } else {
    return GpuLower::lowerValue(op);
  }
}

Val* IndexLowering::lowerOutput(Expr* expr) const {
  TORCH_CHECK(expr->outputs().size() == 1);
  const auto out = expr->output(0);
  if (ir_utils::isTVOp(expr)) {
    return Index::getConsumerIndex(
        ir_utils::asTV(out), scope_utils::getLoops(active_scope_expr));
  } else {
    return GpuLower::lowerValue(out);
  }
}

void IndexLowering::pushBack(Expr* expr) {
  if (active_scope == nullptr) {
    lowered_exprs.push_back(expr);
  } else {
    active_scope->push_back(expr);
  }
}

void IndexLowering::handle(kir::IfThenElse* ite) {
  Expr* prev_scope_expr = active_scope_expr;
  kir::Scope* prev_scope = active_scope;

  auto new_ite =
      ir_builder_.create<kir::IfThenElse>(ite->cond(), prev_scope_expr);
  pushBack(new_ite);
  active_scope_expr = new_ite;
  active_scope = &new_ite->thenBody();

  for (auto expr : ite->thenBody().exprs()) {
    OptInDispatch::handle(expr);
  }

  active_scope = &new_ite->elseBody();

  for (auto expr : ite->elseBody().exprs()) {
    OptInDispatch::handle(expr);
  }

  active_scope = prev_scope;
  active_scope_expr = prev_scope_expr;
}

void IndexLowering::handle(kir::ForLoop* fl) {
  Expr* prev_scope_expr = active_scope_expr;
  kir::Scope* prev_scope = active_scope;

  auto newFl = ir_builder_.create<kir::ForLoop>(
      fl->index(), fl->iter_domain(), prev_scope_expr);
  pushBack(newFl);

  active_scope_expr = newFl;
  active_scope = &newFl->body();

  for (auto expr : fl->body().exprs()) {
    OptInDispatch::handle(expr);
  }

  active_scope = prev_scope;
  active_scope_expr = prev_scope_expr;
}

void IndexLowering::handle(UnaryOp* uop) {
  if (ir_utils::isTVOp(uop)) {
    const auto in = lowerOperand(uop->in(), uop->out());
    const auto out = lowerOutput(uop);
    pushBack(ir_builder_.create<kir::UnaryOp>(uop->getUnaryOpType(), out, in));
  } else {
    // This will automatically lower the expression defining the value
    pushBack(GpuLower::lowerValue(uop->out())->getOrigin());
  }
}

void IndexLowering::handle(BinaryOp* bop) {
  if (ir_utils::isTVOp(bop)) {
    const auto lhs = lowerOperand(bop->lhs(), bop->out());
    const auto rhs = lowerOperand(bop->rhs(), bop->out());
    const auto out = lowerOutput(bop);
    pushBack(ir_builder_.create<kir::BinaryOp>(
        bop->getBinaryOpType(), out, lhs, rhs));
  } else {
    // This will automatically lower the expression defining the value
    pushBack(GpuLower::lowerValue(bop->out())->getOrigin());
  }
}

void IndexLowering::handle(TernaryOp* top) {
  if (ir_utils::isTVOp(top)) {
    const auto in1 = lowerOperand(top->in1(), top->out());
    const auto in2 = lowerOperand(top->in2(), top->out());
    const auto in3 = lowerOperand(top->in3(), top->out());
    const auto out = lowerOutput(top);
    pushBack(ir_builder_.create<kir::TernaryOp>(
        top->getTernaryOpType(), out, in1, in2, in3));
  } else {
    // This will automatically lower the expression defining the value
    pushBack(GpuLower::lowerValue(top->out())->getOrigin());
  }
}

namespace {

void allocateGridReductionFlag(TensorView* out_tv, Expr* current_scope_expr) {
  kir::IrBuilder ir_builder(GpuLower::current()->kernel());
  auto flag_name = kir::GridReduction::getPredicateFlagName(out_tv);
  auto flag_var = ir_builder.create<kir::Allocate>(
      ir_builder.create<kir::NamedScalar>(flag_name, DataType::Bool),
      MemoryType::Local,
      ir_builder.create<kir::Int>(1));
  // When enclosed by IfThenElse, place the variable outside of the
  // IfThenElse. This IfThenElse is assumed to be the prediate for
  // this grid reduction expression.
  if (current_scope_expr->getExprType() == ExprType::IfThenElse) {
    scope_utils::insertBefore(
        scope_utils::getParent(current_scope_expr),
        current_scope_expr,
        flag_var);
  } else {
    scope_utils::pushBack(current_scope_expr, flag_var);
  }
}

} // namespace

void IndexLowering::handle(ReductionOp* rop) {
  TORCH_INTERNAL_ASSERT(
      ir_utils::isTVOp(rop),
      "Cannot have a reduction operation on something other than a tensor view, but received ",
      rop);

  auto out_tv = ir_utils::asTV(rop->out());

  const bool is_block_reduce = out_tv->hasBlockReduction();
  const bool is_grid_reduce = out_tv->hasGridReduction();

  // If we do a grid reduction we can't have a reduction axis that is not bound
  // to a grid or block dim ()
  if (is_grid_reduce) {
    TORCH_INTERNAL_ASSERT(
        std::none_of(
            out_tv->domain()->domain().begin(),
            out_tv->domain()->domain().end(),
            [](IterDomain* id) {
              return !id->isThread() && id->isReduction();
            }),
        "Found a reduction stage that has both a non-parallelized reduction and a grid reduction.",
        " This is not supported, please use rfactor to do the serialized reduction first, then the grid reduction.");
  }
  const auto loops = scope_utils::getLoops(active_scope_expr);

  kir::TensorIndex* out = Index::getConsumerIndex(out_tv, loops);
  kir::TensorIndex* in = Index::getProducerIndex(
      ir_utils::asTV(rop->in()), ir_utils::asTV(rop->out()), loops);

  kir::ReductionOp* block_reduction_op = nullptr;
  if (is_block_reduce) {
    auto pred =
        PredicateCompute::getInlinePredicate(rop, loops, nullptr, false);

    block_reduction_op = ir_builder_.create<kir::ReductionOp>(
        rop->getReductionOpType(),
        GpuLower::lowerValue(rop->init()),
        out,
        in,
        pred);
    pushBack(block_reduction_op);
  }

  if (is_grid_reduce) {
    // First, declare a boolean flag variable storing the return value
    // of gridReduce.
    allocateGridReductionFlag(out_tv, active_scope_expr);

    std::vector<IterDomain*> buffer_ids(out_tv->domain()->domain());
    buffer_ids.erase(
        std::remove_if(
            buffer_ids.begin(),
            buffer_ids.end(),
            [](IterDomain* id) {
              return id->isReduction() & !id->isBlockDim();
            }),
        buffer_ids.end());

    Val* buffer_size =
        buffer_ids.empty() ? new Int(1) : buffer_ids[0]->rawExtent();
    for (size_t i = 1; i < buffer_ids.size(); i++) {
      buffer_size = mul(buffer_size, buffer_ids[i]->rawExtent());
    }

    std::vector<IterDomain*> sync_ids(out_tv->domain()->domain());
    sync_ids.erase(
        std::remove_if(
            sync_ids.begin(),
            sync_ids.end(),
            [](IterDomain* id) {
              return id->isReduction() || !id->isBlockDim();
            }),
        sync_ids.end());

    Val* sync_size = sync_ids.empty() ? new Int(1) : sync_ids[0]->rawExtent();
    for (size_t i = 1; i < sync_ids.size(); i++) {
      sync_size = mul(sync_size, sync_ids[i]->rawExtent());
    }

    IterDomain* buffer_id = new IterDomain(new Int(0), buffer_size);
    TensorView* reduce_buffer_tv = new TensorView(
        new TensorDomain({buffer_id}),
        out->getDataType().value(),
        MemoryType::Global);

    IterDomain* sync_id = new IterDomain(new Int(0), sync_size);
    TensorView* reduce_sync_tv = new TensorView(
        new TensorDomain({sync_id}), DataType::Int, MemoryType::Global);

    const auto reduce_buffer = ir_builder_.create<kir::Allocate>(
        GpuLower::lowerValue(reduce_buffer_tv),
        reduce_sync_tv->getMemoryType());
    const auto sync_buffer = ir_builder_.create<kir::Allocate>(
        GpuLower::lowerValue(reduce_sync_tv),
        reduce_sync_tv->getMemoryType(),
        nullptr,
        true);

    const auto grid_reduction_op = block_reduction_op == nullptr
        ? ir_builder_.create<kir::ReductionOp>(
              rop->getReductionOpType(),
              GpuLower::lowerValue(rop->init()),
              out,
              in)
        : block_reduction_op;
    auto pred =
        PredicateCompute::getInlinePredicate(rop, loops, nullptr, false);
    const auto grid_reduction = ir_builder_.create<kir::GridReduction>(
        grid_reduction_op, reduce_buffer, sync_buffer, pred);

    pushBack(reduce_buffer);
    pushBack(sync_buffer);
    pushBack(grid_reduction);
  }

  if (!is_block_reduce && !is_grid_reduce) {
    pushBack(ir_builder_.create<kir::BinaryOp>(
        rop->getReductionOpType(), out, out, in));
  }
}

void IndexLowering::handle(BroadcastOp* bop) {
  TORCH_INTERNAL_ASSERT(
      ir_utils::isTVOp(bop),
      "Cannot have a broadcast operation on something other than a tensor view, but received ",
      bop);

  auto loops = scope_utils::getLoops(active_scope_expr);

  kir::TensorIndex* out =
      Index::getConsumerIndex(ir_utils::asTV(bop->out()), loops);

  Val* in = bop->in();
  if (ir_utils::isTV(in))
    in = Index::getProducerIndex(
        ir_utils::asTV(in), ir_utils::asTV(bop->out()), loops);
  pushBack(ir_builder_.create<kir::BroadcastOp>(out, in));
}

void IndexLowering::handle(kir::Allocate* allocate) {
  pushBack(allocate);
}

void IndexLowering::handle(kir::Sync* sync) {
  pushBack(sync);
}

void IndexLowering::generate(const std::vector<Expr*>& exprs) {
  // Run through loop nests and further lower the expressions
  for (auto* expr : exprs) {
    OptInDispatch::handle(expr);
  }
}

} // namespace fuser
} // namespace jit
} // namespace torch