File: lower_thread_predicate.h

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (65 lines) | stat: -rw-r--r-- 2,225 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#pragma once
#include <torch/csrc/WindowsTorchApiMacro.h>

#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>

#include <bitset>

namespace torch {
namespace jit {
namespace fuser {

//! Maps TensorViews to std::pair<ir_utils::ParallelTypeBitmap, SourceMapType>>
//!
//! Map from tensorview to bit set represnting <BIDx, BIDy, BIDz, TIDx, TIDy,
//! TIDz> If any dependency of TV had a parallelized reduction, we will track
//! it here. This will be used for predicate generation to prevent
//! parallelization on that axis. This is important if we have a reduction on
//! for example TIDx, as the reduced value is only valid on threadIdx.x == 0
//! therefore if we use that value later in the kernel we have that predicate.
//! If we follow a reduction parallelized on TIDx with a broadcast on TIDx we
//! no longer need the predicate and can reset the bit accordingly
//!
class TORCH_CUDA_API ThreadPredicateMap {
 public:
  using SourceMapType = std::unordered_map<
      ParallelType,
      std::unordered_set<const TensorView*>,
      TypeHash>;
  using MapType = std::unordered_map<
      const TensorView*,
      std::pair<ir_utils::ParallelTypeBitmap, SourceMapType>>;
  using const_iterator = MapType::const_iterator;

  explicit ThreadPredicateMap(Fusion* _fusion);

  const_iterator find(const TensorView* tv) const;
  const_iterator end() const;
  const MapType::mapped_type& at(const TensorView* tv) const;
  MapType::mapped_type& at(const TensorView* tv);
  MapType::mapped_type& operator[](const TensorView* tv);

  void duplicate(const TensorView* copy, const TensorView* origin);

  // Returns a Bool predicate expression for a given output TensorView.
  kir::Bool* getExpr(const TensorView* out_tv) const;

 private:
  // Update the thread_predicates bitset based on provided Expr
  void updateBitSet(Expr*);

  void insert(
      const TensorView* tv,
      const ir_utils::ParallelTypeBitmap& pred,
      const SourceMapType& src_map);
  void insert(const TensorView* tv, const MapType::mapped_type& pred_and_src);

 private:
  Fusion* fusion_ = nullptr;
  MapType thread_predicates_;
};

} // namespace fuser
} // namespace jit
} // namespace torch