1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
#include <torch/csrc/jit/codegen/cuda/lower_unroll.h>
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/index_compute.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/predicate_compute.h>
namespace torch {
namespace jit {
namespace fuser {
kir::Bool* UnrollPass::getThreadPredicate(TensorView* tv) {
// No thread predicate is needed predicate when tv is output of a
// parallel broadcast expression.
const auto origin = tv->getOrigin();
if (origin != nullptr && origin->getExprType() == ExprType::BroadcastOp) {
const auto out = origin->as<BroadcastOp>()->out();
if (ir_utils::getParallelBroadcastDomains(out, thread_predicates_).any()) {
return nullptr;
}
}
return thread_predicates_.getExpr(tv);
}
// Custom dispatch for Expr, want to find out of it's a TV op.
void UnrollPass::handle(Expr* expr) {
// If tv op, predciate it.
if (ir_utils::isTVOp(expr)) {
TORCH_INTERNAL_ASSERT(for_loops.size() != 0);
auto pred = PredicateCompute::getInlinePredicate(
expr, for_loops, getThreadPredicate(ir_utils::getTVOutput(expr)));
// If we need a predicate, put expr inside an if then else
if (!(pred->isConst()) || !(pred->isConst() && pred->value().value())) {
non_trivial_pred_found = true;
kir::IrBuilder ir_builder(GpuLower::current()->kernel());
kir::IfThenElse* inline_ite =
ir_builder.create<kir::IfThenElse>(pred, for_loops.back());
inline_ite->thenBody().push_back(expr);
for_loops.back()->body().insert_before(expr, inline_ite);
for_loops.back()->body().erase(expr);
}
} else {
// If not tv op, dispatch it.
OptOutDispatch::handle(expr);
}
}
// We should factor our actual predicate generation from unrolling but insering
// IR nodes "unroll_pred" or "inline_pred", then generate those later.
void UnrollPass::handle(kir::ForLoop* fl) {
// Setup for loop scoping
bool is_unroll = ir_utils::isUnrolledFor(fl);
// If we're not looking for an unroll loop, or didn't find one, process as
// normal.
if (!is_unroll || !look_for_unroll) {
for_loops.push_back(fl);
std::vector<Expr*> exprs_copy = fl->body().exprs();
// Make copy of exprs because we replace them inplace in fl
for (auto expr : exprs_copy) {
handle(expr);
}
for_loops.pop_back();
return;
}
auto unroll_pred = UnrollPredicate::get(for_loops, fl, p2c_root_map);
kir::ForLoop* parent_scope = for_loops.empty() ? nullptr : for_loops.back();
kir::IrBuilder ir_builder(GpuLower::current()->kernel());
kir::IfThenElse* unroll_ite =
ir_builder.create<kir::IfThenElse>(unroll_pred, parent_scope);
// Get the loop nest for the unrolled path
kir::ForLoop* unrolled_loop_nest = scope_utils::cloneLoopNest(fl, unroll_ite);
unroll_ite->thenBody().push_back(unrolled_loop_nest);
// Loop nest for inlined path
kir::ForLoop* inlined_loop = scope_utils::cloneLoopNest(fl, unroll_ite);
// Add inline predicates for inlined loop nest
look_for_unroll = false;
non_trivial_pred_found = false;
handle(inlined_loop);
look_for_unroll = true;
if (!non_trivial_pred_found) {
inlined_loop->setParentScope(parent_scope);
loop_replacement_map.insert({fl, inlined_loop});
} else {
unroll_ite->elseBody().push_back(inlined_loop);
loop_replacement_map.insert({fl, unroll_ite});
}
}
// Generate the loop nest structure and place it in lowered_exprs
void UnrollPass::computeMap() {
FUSER_PERF_SCOPE("UnrollPass::computeMap");
FusionGuard fg(fusion_);
// Run through loop nests and further lower the expressions
for (auto* expr : incoming_exprs_) {
OptOutDispatch::handle(expr);
}
}
std::vector<Expr*> UnrollPass::runPass(
Fusion* fusion,
const std::vector<Expr*>& exprs,
const ThreadPredicateMap& thread_predicates) {
FUSER_PERF_SCOPE("UnrollPass::runPass");
FusionGuard fg(fusion);
UnrollPass up(fusion, exprs, thread_predicates);
up.computeMap();
std::vector<Expr*> mutated_exprs;
for (Expr* expr : exprs) {
if (up.loop_replacement_map.find(expr) != up.loop_replacement_map.end()) {
mutated_exprs.push_back(up.loop_replacement_map[expr]);
} else {
if (ir_utils::isScope(expr))
scope_utils::replaceExprsInScope(expr, up.loop_replacement_map);
mutated_exprs.push_back(expr);
}
}
return mutated_exprs;
}
} // namespace fuser
} // namespace jit
} // namespace torch
|