File: lower_utils.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (723 lines) | stat: -rw-r--r-- 19,339 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/kernel_ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/lower_thread_predicate.h>

#include <algorithm>

namespace torch {
namespace jit {
namespace fuser {

namespace scope_utils {

// START SCOPE HELPER SYSTEMS
namespace {

class Loops : private OptInDispatch {
 private:
  std::deque<kir::ForLoop*> loops;
  void handle(kir::ForLoop* fl) final {
    loops.insert(loops.begin(), fl);
  }

  void handle(kir::IfThenElse* ite) final {}

  void handle(Expr* expr) final {
    OptInDispatch::handle(expr);
  }

 public:
  static std::vector<kir::ForLoop*> getLoops(Expr* scope) {
    Loops loops;
    Expr* it = scope;
    while (it != nullptr) {
      loops.handle(it);
      it = scope_utils::getParent(it);
    }
    return std::vector<kir::ForLoop*>(loops.loops.begin(), loops.loops.end());
  }
};

class scopePushBack : private OptInDispatch {
 private:
  Expr* expr_;
  void handle(kir::ForLoop* fl) final {
    fl->body().push_back(expr_);
  }

  void handle(kir::IfThenElse* ite) final {
    ite->thenBody().push_back(expr_);
  }

  void handle(Expr* expr) final {
    OptInDispatch::handle(expr);
  }

  scopePushBack(Expr* expr) : expr_(expr) {}

 public:
  static void push(Expr* scope, Expr* expr) {
    scopePushBack pb(expr);
    TORCH_INTERNAL_ASSERT(
        expr != nullptr && scope != nullptr,
        "Cannot push back, scope or expr is a nullptr.");
    pb.handle(scope);
  }
};

class scopeInsertBefore : private OptInDispatch {
 private:
  Expr* ref_;
  Expr* expr_;
  void handle(kir::ForLoop* fl) final {
    fl->body().insert_before(ref_, expr_);
  }

  void handle(kir::IfThenElse* ite) final {
    ite->thenBody().insert_before(ref_, expr_);
  }

  void handle(Expr* expr) final {
    OptInDispatch::handle(expr);
  }

  scopeInsertBefore(Expr* ref, Expr* expr) : ref_(ref), expr_(expr) {}

 public:
  static void insert(Expr* scope, Expr* ref, Expr* expr) {
    scopeInsertBefore scb(ref, expr);
    TORCH_INTERNAL_ASSERT(
        expr != nullptr && scope != nullptr,
        "Cannot push back, scope or expr is a nullptr.");
    scb.handle(scope);
  }
};

class ExprInScope : private OptInDispatch {
 private:
  Expr* expr_;
  bool contains_ = false;

  void handle(kir::ForLoop* fl) final {
    if (fl->body().contains(expr_)) {
      contains_ = true;
    }
  }

  void handle(kir::IfThenElse* ite) final {
    if (ite->thenBody().contains(expr_)) {
      contains_ = true;
    }
  }

  void handle(Expr* expr) final {
    OptInDispatch::handle(expr);
  }

  ExprInScope(Expr* expr) : expr_(expr) {}

 public:
  static bool find(Expr* scope, Expr* expr) {
    ExprInScope eis(expr);
    TORCH_INTERNAL_ASSERT(
        expr != nullptr && scope != nullptr,
        "Cannot push back, scope or expr is a nullptr.");
    eis.handle(scope);
    return eis.contains_;
  }
};

class parentScope : private OptInDispatch {
 private:
  Expr* parent_ = nullptr;

  void handle(kir::ForLoop* fl) final {
    parent_ = fl->parentScope();
  }

  void handle(kir::IfThenElse* ite) final {
    parent_ = ite->parentScope();
  }

  void handle(Expr* expr) final {
    OptInDispatch::handle(expr);
  }

 public:
  static Expr* get(Expr* scope) {
    parentScope sp;
    sp.handle(scope);
    return sp.parent_;
  }
};

void assertScope(Expr* expr) {
  TORCH_INTERNAL_ASSERT(
      expr->getExprType() == ExprType::ForLoop ||
          expr->getExprType() == ExprType::IfThenElse,
      "Assert Scope failed when calling a scope_util function.");
}

class CloneLoopNest : public OptOutMutator {
 private:
  Expr* parent_scope_ = nullptr;
  Expr* to_clone_ = nullptr;

  Statement* mutate(kir::ForLoop* fl) final {
    kir::IrBuilder ir_builder(GpuLower::current()->kernel());
    const auto parent_scope =
        fl == to_clone_ ? parent_scope_ : fl->parentScope();
    auto new_loop = ir_builder.create<kir::ForLoop>(
        fl->index(), fl->iter_domain(), parent_scope);
    for (Expr* expr : fl->body().exprs()) {
      new_loop->body().push_back(ir_utils::asExpr(OptOutMutator::mutate(expr)));
    }
    return new_loop;
  }

  CloneLoopNest(Expr* _to_clone, Expr* _parent_scope)
      : parent_scope_(_parent_scope), to_clone_(_to_clone) {}

 public:
  static kir::ForLoop* getClone(kir::ForLoop* _to_clone, Expr* _parent_scope) {
    TORCH_INTERNAL_ASSERT(
        _to_clone != nullptr,
        "Tried to clone a scope, but received a nullptr.");
    CloneLoopNest cln(_to_clone, _parent_scope);
    return ir_utils::asForLoop(ir_utils::asExpr(cln.mutate(_to_clone)));
  }
};

class ReplaceExprsInScope : public OptOutDispatch {
 public:
  static void replace(
      Expr* scope,
      std::unordered_map<Expr*, Expr*> replacement_map) {
    ReplaceExprsInScope reis(std::move(replacement_map));
    reis.handle(scope);
  }

 private:
  explicit ReplaceExprsInScope(std::unordered_map<Expr*, Expr*> replacement_map)
      : replacement_map_(std::move(replacement_map)) {}

  void handleScope(kir::Scope& scope) {
    for (size_t i = 0; i < scope.size(); ++i) {
      const auto it = replacement_map_.find(scope[i]);
      if (it == replacement_map_.end()) {
        handle(scope[i]);
        continue;
      }
      scope[i] = it->second;
    }
  }

  void handle(Expr* expr) final {
    OptOutDispatch::handle(expr);
  }

  void handle(kir::ForLoop* fl) final {
    handleScope(fl->body());
  }

  void handle(kir::IfThenElse* ite) final {
    handleScope(ite->thenBody());
    handleScope(ite->elseBody());
  }

 private:
  std::unordered_map<Expr*, Expr*> replacement_map_;
};

class FirstInnerMostScope : private OptInDispatch {
 private:
  Expr* active_scope = nullptr;

  void handle(kir::ForLoop* fl) final {
    for (auto expr : fl->body().exprs()) {
      if (ir_utils::isScope(expr)) {
        active_scope = expr;
        return;
      }
    }
    active_scope = nullptr;
  }

  void handle(kir::IfThenElse* ite) final {
    for (auto expr : ite->thenBody().exprs()) {
      if (ir_utils::isScope(expr)) {
        active_scope = expr;
        return;
      }
    }
    for (auto expr : ite->elseBody().exprs()) {
      if (ir_utils::isScope(expr)) {
        active_scope = expr;
        return;
      }
    }
    active_scope = nullptr;
  }

  Expr* getInner(Expr* expr) {
    OptInDispatch::handle(expr);
    return active_scope;
  }

 public:
  static Expr* get(Expr* scope) {
    TORCH_INTERNAL_ASSERT(
        scope != nullptr,
        "Tried to get inner most scope, but was provided nullptr.");

    FirstInnerMostScope fims;
    Expr* inner = fims.getInner(scope);

    if (inner == nullptr)
      return scope;

    while (fims.getInner(inner) != nullptr)
      inner = fims.getInner(inner);
    return inner;
  }
};

// END SCOPE HELPER SYSTEMS
} // namespace

// Grab the ForLoop starting from scope working out
std::vector<kir::ForLoop*> getLoops(Expr* scope) {
  if (scope == nullptr)
    return std::vector<kir::ForLoop*>();
  assertScope(scope);
  return Loops::getLoops(scope);
}

// Push back an expr to scope
void pushBack(Expr* scope, Expr* expr) {
  TORCH_INTERNAL_ASSERT(
      scope != nullptr, "Scope is a nullptr, cannot push an expr to it.");
  assertScope(scope);
  scopePushBack::push(scope, expr);
}

// Insert expr in scope before ref
void insertBefore(Expr* scope, Expr* ref, Expr* expr) {
  scopeInsertBefore::insert(scope, ref, expr);
}

bool exprInScope(Expr* scope, Expr* expr) {
  return ExprInScope::find(scope, expr);
}

// Return the parent of the active scope
Expr* getParent(Expr* scope) {
  TORCH_INTERNAL_ASSERT(
      scope != nullptr,
      "Tried to close the active scope, but there isn't one set.");
  assertScope(scope);
  return parentScope::get(scope);
}

// Open a new inner most for loop
kir::ForLoop* openFor(Expr* scope, IterDomain* id) {
  kir::IrBuilder ir_builder(GpuLower::current()->kernel());
  const auto kir_id = GpuLower::lowerValue(id)->as<kir::IterDomain>();
  kir::ForLoop* new_scope = nullptr;
  if (id->isThread()) {
    std::stringstream ss;
    ss << id->getParallelType();
    new_scope = ir_builder.create<kir::ForLoop>(
        ir_builder.create<kir::NamedScalar>(ss.str(), DataType::Int),
        kir_id,
        scope);
  } else {
    new_scope = ir_builder.create<kir::ForLoop>(
        ir_builder.create<kir::Int>(c10::nullopt), kir_id, scope);
  }
  if (scope != nullptr)
    pushBack(scope, new_scope);
  return new_scope;
}

kir::ForLoop* cloneLoopNest(kir::ForLoop* to_clone, Expr* parent_scope) {
  return CloneLoopNest::getClone(to_clone, parent_scope);
}

void replaceExprsInScope(
    Expr* scope,
    std::unordered_map<Expr*, Expr*> replacement_map) {
  TORCH_INTERNAL_ASSERT(
      replacement_map.find(scope) == replacement_map.end(),
      "Error trying to replace expressions in a scope, scope wants to be replaced entirely.");
  ReplaceExprsInScope::replace(scope, std::move(replacement_map));
}

Expr* firstInnerMostScope(Expr* scope) {
  return FirstInnerMostScope::get(scope);
}

} // namespace scope_utils

namespace ir_utils {

TVDomainGuard::TVDomainGuard(TensorView* _tv, TensorDomain* td)
    : tv_(_tv), prev_domain(tv_->domain()) {
  tv_->setDomain(td);
}

TVDomainGuard::~TVDomainGuard() {
  tv_->setDomain(prev_domain);
}

std::vector<IterDomain*> iterDomainInputsOf(
    const std::vector<IterDomain*>& input_ids) {
  auto inputs = IterVisitor::getInputsTo({input_ids.begin(), input_ids.end()});
  std::vector<IterDomain*> id_inputs(
      ir_utils::filterByType<IterDomain>(inputs).begin(),
      ir_utils::filterByType<IterDomain>(inputs).end());
  return id_inputs;
}

std::vector<IterDomain*> iterDomainInputsOfOrderedAs(
    const std::vector<IterDomain*>& of,
    const std::vector<IterDomain*>& order) {
  auto inputs_vec = iterDomainInputsOf(of);

  std::unordered_set<IterDomain*> inputs_set(
      inputs_vec.begin(), inputs_vec.end());

  std::vector<IterDomain*> ordered_inputs;
  std::copy_if(
      order.begin(),
      order.end(),
      std::back_inserter(ordered_inputs),
      [&inputs_set](const auto& id) {
        return inputs_set.find(id) != inputs_set.end();
      });

  return ordered_inputs;
}

std::vector<Val*> indices(std::vector<kir::ForLoop*> loops) {
  std::vector<Val*> inds(loops.size());
  std::transform(
      loops.begin(), loops.end(), inds.begin(), [](kir::ForLoop* fl) {
        return fl->index();
      });
  return inds;
}

bool isTV(const Val* val) {
  return val->getValType().value() == ValType::TensorView;
}

// Check if we're a TensorView op that we can generate code for.
bool isTVOp(const Expr* expr) {
  if (expr->outputs().size() == 1 && isTV(expr->output(0)) &&
      (expr->getExprType().value() == ExprType::BinaryOp ||
       expr->getExprType().value() == ExprType::UnaryOp ||
       expr->getExprType().value() == ExprType::TernaryOp ||
       expr->getExprType().value() == ExprType::ReductionOp ||
       expr->getExprType().value() == ExprType::BroadcastOp))
    return true;
  return false;
}

TensorView* getTVOutput(const Expr* expr) {
  for (auto out : expr->outputs()) {
    if (out->getValType().value() == ValType::TensorView) {
      return out->as<TensorView>();
    }
  }
  return nullptr;
}

bool isScalarOp(const Expr* expr) {
  for (auto out : expr->outputs())
    if (!out->isScalar())
      return false;
  return true;
}

void ASSERT_EXPR(Statement* stmt) {
  TORCH_INTERNAL_ASSERT(
      stmt->isExpr(),
      "Tried to generate a kernel but hit a non expression during lowering: ",
      stmt);
}

Expr* asExpr(Statement* stmt) {
  ASSERT_EXPR(stmt);
  return stmt->as<Expr>();
}

TensorView* asTV(Val* val) {
  TORCH_INTERNAL_ASSERT(isTV(val));
  return val->as<TensorView>();
}

bool isScope(const Expr* expr) {
  return expr->getExprType() == ExprType::ForLoop ||
      expr->getExprType() == ExprType::IfThenElse;
}

kir::ForLoop* asForLoop(Statement* stmt) {
  Expr* expr = asExpr(stmt);
  TORCH_INTERNAL_ASSERT(expr->getExprType() == ExprType::ForLoop);
  return expr->as<kir::ForLoop>();
}

const TensorView* asConstTV(const Val* val) {
  TORCH_INTERNAL_ASSERT(isTV(val));
  return val->as<TensorView>();
}

bool isUnrolledFor(const Expr* expr) {
  if (expr->getExprType() != ExprType::ForLoop) {
    return false;
  }
  return expr->as<kir::ForLoop>()->iter_domain()->getParallelType() ==
      ParallelType::Unroll;
}

const std::unordered_map<ParallelType, int, TypeHash>
    ParallelTypeBitmap::pt_to_offset_{{ParallelType::BIDx, 0},
                                      {ParallelType::BIDy, 1},
                                      {ParallelType::BIDz, 2},
                                      {ParallelType::TIDx, 3},
                                      {ParallelType::TIDy, 4},
                                      {ParallelType::TIDz, 5}};

const std::unordered_map<int, ParallelType> ParallelTypeBitmap::offset_to_pt_ =
    {{0, ParallelType::BIDx},
     {1, ParallelType::BIDy},
     {2, ParallelType::BIDz},
     {3, ParallelType::TIDx},
     {4, ParallelType::TIDy},
     {5, ParallelType::TIDz}};

bool ParallelTypeBitmap::get(ParallelType pt) const {
  if (pt_to_offset_.find(pt) == pt_to_offset_.end()) {
    TORCH_INTERNAL_ASSERT(false, "Could not recognize parallel type.");
  }
  return bitset_[pt_to_offset_.at(pt)];
}

bool ParallelTypeBitmap::set(ParallelType pt, bool new_val) {
  if (pt_to_offset_.find(pt) == pt_to_offset_.end()) {
    TORCH_INTERNAL_ASSERT(false, "Could not recognize parallel type.");
  }
  bool old_val = bitset_[pt_to_offset_.at(pt)];
  bitset_[pt_to_offset_.at(pt)] = new_val;
  return old_val;
}

ParallelTypeBitmap ParallelTypeBitmap::operator&=(
    const ParallelTypeBitmap& other) {
  bitset_ &= other.bitset_;
  return *this;
}

ParallelTypeBitmap ParallelTypeBitmap::operator|=(
    const ParallelTypeBitmap& other) {
  bitset_ |= other.bitset_;
  return *this;
}

ParallelTypeBitmap ParallelTypeBitmap::operator^=(
    const ParallelTypeBitmap& other) {
  bitset_ ^= other.bitset_;
  return *this;
}

ParallelTypeBitmap ParallelTypeBitmap::operator~() const {
  return ParallelTypeBitmap(~bitset_);
}

bool ParallelTypeBitmap::none() const {
  return bitset_.none();
}

bool ParallelTypeBitmap::any() const {
  return bitset_.any();
}

bool ParallelTypeBitmap::all() const {
  return bitset_.all();
}

bool ParallelTypeBitmap::operator[](size_t pos) const {
  TORCH_INTERNAL_ASSERT(
      pos < num_p_type, "Invalid index to ParallelTypeBitset: ", pos);
  return bitset_[pos];
}

std::map<ParallelType, bool> ParallelTypeBitmap::getMap() const {
  std::map<ParallelType, bool> map;
  for (const auto& pt_offset : pt_to_offset_) {
    map.emplace(pt_offset.first, bitset_[pt_offset.second]);
  }
  return map;
}

ParallelTypeBitmap operator&(
    const ParallelTypeBitmap& lhs,
    const ParallelTypeBitmap& rhs) {
  auto x = lhs;
  x &= rhs;
  return x;
}

ParallelTypeBitmap operator|(
    const ParallelTypeBitmap& lhs,
    const ParallelTypeBitmap& rhs) {
  auto x = lhs;
  x |= rhs;
  return x;
}

ParallelTypeBitmap operator^(
    const ParallelTypeBitmap& lhs,
    const ParallelTypeBitmap& rhs) {
  auto x = lhs;
  x ^= rhs;
  return x;
}

ParallelTypeBitmap getParallelBroadcastDomains(
    const Val* bop_out,
    const ThreadPredicateMap& preds) {
  if (bop_out->getValType().value() == ValType::TensorIndex) {
    bop_out = bop_out->as<kir::TensorIndex>()->view()->fuserTv();
  }
  TORCH_INTERNAL_ASSERT(
      bop_out->getValType().value() == ValType::TensorView,
      "Out is not tensor view");
  auto out_tv = bop_out->as<TensorView>();
  // If no pred is found for out_tv, no predicate is necessary
  if (preds.find(out_tv) == preds.end()) {
    return ParallelTypeBitmap();
  }
  const ParallelTypeBitmap& out_pred = preds.at(out_tv).first;

  ParallelTypeBitmap parallel_broadcast;
  const auto& iter_domains = out_tv->domain()->domain();
  // If the output is on shared memory, assume that all subsequent
  // reads from all threads in its CTA can be done with no parallel
  // broadcast. Only one thread will write to shared memory followed
  // by a proper _syncthreads.
  const bool output_smem = out_tv->getMemoryType() == MemoryType::Shared;
  for (auto id : iter_domains) {
    if (!id->isBroadcast()) {
      continue;
    }
    if (id->isBlockDim() || (!output_smem && id->isThreadDim())) {
      parallel_broadcast.set(id->getParallelType(), true);
    }
  }

  return parallel_broadcast & out_pred;
}

} // namespace ir_utils

namespace loop_utils {

std::pair<kir::ForLoop*, int64_t> getAllocPoint(
    TensorView* tv,
    const std::vector<kir::ForLoop*>& loops) {
  // If in global memory, it can be all the way outside the loops.
  if (tv->getMemoryType() == MemoryType::Global) {
    return {nullptr, 0};
  }

  // Figure out where we want to place alloc/reduction initialization. We want
  // outside an unroll loop, or inside our computeAt point.
  kir::ForLoop* alloc_loop = nullptr;

  auto loops_it = loops.begin();

  // Look at each axis individually in out's domain
  for (int64_t tv_i = 0; tv_i < (int64_t)tv->getThisComputeAtAxis(); tv_i++) {
    // Grab the axis ID

    auto ca_id = tv->getComputeAtAxis(tv_i).first;
    auto kir_ca_id = GpuLower::lowerValue(ca_id)->as<kir::IterDomain>();

    loops_it =
        std::find_if(loops_it, loops.end(), [&kir_ca_id](const auto& loop) {
          return kir_ca_id == loop->iter_domain() ||
              loop->iter_domain()->getParallelType() == ParallelType::Unroll;
        });

    if (loops_it == loops.end()) {
      for (auto loop : loops) {
        std::cout << loop->iter_domain() << "  ";
      }
      std::cout << std::endl;
    }
    TORCH_INTERNAL_ASSERT(
        loops_it != loops.end(),
        "Could not find all required axes for indexing when trying to index into ",
        tv);

    if (kir_ca_id->getParallelType() == ParallelType::Unroll) {
      return {alloc_loop, tv_i};
    }

    alloc_loop = *loops_it;
    ++loops_it;
  }

  return {alloc_loop, (int64_t)tv->getThisComputeAtAxis()};
}

std::unordered_map<IterDomain*, IterDomain*> p2cRootMap(
    const std::vector<Expr*>& exprs) {
  std::unordered_map<IterDomain*, IterDomain*> p2c_root_map;

  for (auto expr : exprs) {
    auto out_tv = ir_utils::getTVOutput(expr);
    for (auto inp : expr->inputs()) {
      if (inp->getValType().value() != ValType::TensorView) {
        continue;
      }

      auto root_p2c = TensorDomain::mapRootPtoC(
          inp->as<TensorView>()->domain(), out_tv->domain());
      for (auto entry : root_p2c) {
        auto p_id = entry.first;
        auto c_id = entry.second;
        // Careful we don't allow circular references
        if (p_id != c_id) {
          p2c_root_map[p_id] = c_id;
        }
      }
    }
  }

  return p2c_root_map;
}

IterDomain* getTermIDInMap(
    IterDomain* root_id,
    std::unordered_map<IterDomain*, IterDomain*> p2c_root_map) {
  auto entry = root_id;
  while (p2c_root_map.find(entry) != p2c_root_map.end()) {
    entry = p2c_root_map.at(entry);
  }
  return entry;
}

} // namespace loop_utils

} // namespace fuser
} // namespace jit
} // namespace torch