File: lower_validation.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (74 lines) | stat: -rw-r--r-- 2,692 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#include <torch/csrc/jit/codegen/cuda/lower_validation.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/lower_utils.h>
#include <torch/csrc/jit/codegen/cuda/transform_replay.h>
#include <torch/csrc/jit/codegen/cuda/type.h>

namespace torch {
namespace jit {
namespace fuser {

void validateIr(Fusion* fusion) {
  FUSER_PERF_SCOPE("validateIr");

  FusionGuard fg(fusion);

  auto used_vals = DependencyCheck::getAllValsBetween(
      {fusion->outputs().begin(), fusion->outputs().end()}, fusion->inputs());

  std::unordered_set<TensorView*> used_tvs;

  for (auto val : used_vals) {
    if (ir_utils::isTV(val)) {
      used_tvs.emplace(val->as<TensorView>());
    }
  }

  fusion->validateInputs();

  for (auto tv : used_tvs) {
    for (decltype(tv->nDims()) i{0}; i < tv->nDims(); i++) {
      IterDomain* id = tv->getComputeAtAxis(i).first;

      if (id->isBlockDim()) {
        TORCH_CHECK(
            !id->isBroadcast(),
            "Parallelization across blocks on broadcast axes is not supported, but found on, ",
            tv,
            ".");
      }
      if (tv->hasBroadcast() && tv->getMemoryType() != MemoryType::Global) {
        auto td = tv->domain()->domain();
        auto ca_inputs = ir_utils::iterDomainInputsOf(
            {td.begin(), td.begin() + tv->getThisComputeAtAxis()});
        auto non_ca_inputs = ir_utils::iterDomainInputsOf(
            {td.begin() + tv->getThisComputeAtAxis(), td.end()});

        std::unordered_set<IterDomain*> ca_inputs_set(
            ca_inputs.begin(), ca_inputs.end());
        std::unordered_set<IterDomain*> non_ca_inputs_set(
            non_ca_inputs.begin(), non_ca_inputs.end());

        for (auto id : tv->getRootDomain()) {
          if (id->isBroadcast()) {
            // If a broadcast dimension is an input to both an axis within the
            // computeAt point and outside the compute at point we would have to
            // look at consumers to figure out what that axis will be
            // broadcasted to, because we would have to generate everything the
            // consumer could need on that axis. This could be supported but is
            // not at this point.
            TORCH_INTERNAL_ASSERT(
                !(ca_inputs_set.find(id) != ca_inputs_set.end() &&
                  non_ca_inputs_set.find(id) != non_ca_inputs_set.end()),
                "Cannot generate a kernel where a root broadcast dimension is input to both IterDomains outside and within the computeAt point.");
          }
        }
      }
    }
  }
}

} // namespace fuser
} // namespace jit
} // namespace torch