File: scheduler.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (686 lines) | stat: -rw-r--r-- 24,387 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
#include <torch/csrc/jit/codegen/cuda/scheduler.h>

#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/executor_utils.h>
#include <torch/csrc/jit/codegen/cuda/expr_evaluator.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/parser.h>

#include <ATen/cuda/CUDAContext.h>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

constexpr int kUnrollFactor = 1;

namespace {

std::vector<int> reductionAxes(TensorView* tv) {
  size_t n_dims = tv->nDims();
  std::vector<int> reduction_axes;
  for (size_t i = 0; i < n_dims; i++) {
    if (tv->axis(i)->isReduction()) {
      reduction_axes.emplace_back(i);
    }
  }
  return reduction_axes;
}

// Merge all reduction to the right side and returns total number of
// reduction axes
size_t mergeReduction(TensorView* tv) {
  int prev_i = -1;
  size_t num_merged = 0;
  for (int i = static_cast<int>(tv->nDims()) - 1; i >= 0; i--) {
    if (!tv->axis(i)->isReduction()) {
      continue;
    }
    if (prev_i == -1) {
      prev_i = i;
    } else {
      tv->merge(i, prev_i);
      prev_i = i;
      num_merged++;
    }
  }
  if (prev_i == 0) {
    tv->reorder({{prev_i, -1}});
  }

  return prev_i == -1 ? 0 : num_merged + 1;
}

// merge all non-reduction axes to the left side and returns total number of
// iteration axes
size_t mergeNonReduction(TensorView* tv) {
  int prev_i = -1;
  size_t num_merged = 0;
  for (int i = static_cast<int>(tv->nDims()) - 1; i >= 0; i--) {
    if (tv->axis(i)->isReduction()) {
      continue;
    }
    if (prev_i == -1) {
      prev_i = i;
    } else {
      tv->merge(i, prev_i);
      prev_i = i;
      num_merged++;
    }
  }
  if (prev_i != 0) {
    tv->reorder({{prev_i, 0}});
  }

  return prev_i == -1 ? 0 : num_merged + 1;
}

} // namespace

// This one is a total mess and it should go.
bool scheduleFusion(Fusion* fusion, const at::ArrayRef<c10::IValue> inputs) {
  FUSER_PERF_SCOPE("scheduleFusion");

  FusionGuard fg(fusion);
  // maybe has_reduction for scheudling should be done on a per output tensor
  // basis.
  TORCH_INTERNAL_ASSERT(
      !fusion->hasReduction(), "This scheduler only handles pointwise ops.");
  const bool disable_unroll = fusion->isStochastic();

  for (auto out_val : fusion->outputs()) {
    auto out = out_val->as<TensorView>();

    // Merge all dimensions because we're only supporting pointwise
    while (out->nDims() > 1) {
      out->merge(-2, -1);
    }
  }

  // Run through outputs, grab all inputs of outputs
  // squeeze with computeAt to set overall structure.
  for (auto output : fusion->outputs()) {
    if (output->getValType() != ValType::TensorView)
      continue;
    TensorView* out_tv = output->as<TensorView>();

    // Split into 128 which will be bockDim.x
    out_tv->split(0, kPwThreadX);
    // Split by another 4 which will be our unroll factor
    auto ur_factor = disable_unroll ? 1 : kUnrollFactor;
    if (!disable_unroll) {
      out_tv->split(0, ur_factor);
    }
  }

  for (auto output : fusion->outputs()) {
    if (output->getValType() != ValType::TensorView)
      continue;
    TensorView* out_tv = output->as<TensorView>();
    for (Val* inp : fusion->inputsOf(output)) {
      if (inp->getValType().value() == ValType::TensorView)
        inp->as<TensorView>()->computeAt(out_tv, -1);
    }
    out_tv->axis(0)->parallelize(ParallelType::BIDx);
    out_tv->axis(1)->parallelize(ParallelType::Unroll);
    out_tv->axis(2)->parallelize(ParallelType::TIDx);
  }

  return true;
}

namespace {
// Largest Power of 2 less-than n
constexpr int lastPow2(int n) {
  n |= (n >> 1);
  n |= (n >> 2);
  n |= (n >> 4);
  n |= (n >> 8); // NOLINT(cppcoreguidelines-avoid-magic-numbers)
  n |= (n >> 16); // NOLINT(cppcoreguidelines-avoid-magic-numbers)
  return std::max(1, n - (n >> 1));
}

ReductionParams reductionHeuristic(
    int red_elems,
    int red_outputs,
    bool red_on_fastest_dim) {
  ReductionParams rparams;
  rparams.fastest_dim = red_on_fastest_dim;

  int gdimx = LaunchParams::UNINITIALIZED_VAL;
  int gdimy = LaunchParams::UNINITIALIZED_VAL;
  int bdimx = LaunchParams::UNINITIALIZED_VAL;
  int bdimy = LaunchParams::UNINITIALIZED_VAL;

  // 1. Initial Assumptions

  // Evaluate Dimensions of Reduction TensorView
  TORCH_INTERNAL_ASSERT(red_elems > 0 && red_outputs > 0);

  // 2. Initial Definition of Block Dimensions

  // Is fastest dimension a reduction dimension?
  if (rparams.fastest_dim) {
    if (red_elems < rparams.loop_unroll) {
      rparams.loop_unroll = 1;
    }
    bdimx = ceilDiv(red_elems, rparams.loop_unroll);
    bdimy = red_outputs;
  } else {
    bdimx = red_outputs;
    bdimy = red_elems;
  }

  // 3. Applying Power of 2 Blocking based on the Maximum Number of threads

  constexpr int kMaxNumThreads = 512;
  int num_threads = kMaxNumThreads;
  int device_warp_size = at::cuda::warp_size();

  if (bdimx < num_threads) {
    bdimx = lastPow2(bdimx);
  } else {
    bdimx = num_threads;
  }

  if (bdimy < num_threads) {
    bdimy = lastPow2(bdimy);
  } else {
    bdimy = num_threads;
  }

  int bdimx_prev = bdimx;
  bdimx = std::min(bdimx, device_warp_size);
  bdimy = std::min(bdimy, num_threads / bdimx);
  bdimx = std::min(bdimx_prev, num_threads / bdimy);

  // 4. Distributing work across a block

  // Magic numbers of calculations allowed per thread.
  constexpr int kMinValuesPerThread = 16;
  constexpr int kMaxValuesPerThread = 256;

  int inputs_consumed_per_block_iter = 1;
  int red_elems_per_thread = red_elems;

  int outputs_produced_per_block_iter = 1;

  // Reduction is performed across warp threads (cross-thread reduction)
  if (rparams.fastest_dim) {
    inputs_consumed_per_block_iter *= bdimx;
    red_elems_per_thread =
        ceilDiv(red_elems_per_thread, inputs_consumed_per_block_iter);
    // Warp threads are applied across the output
  } else {
    outputs_produced_per_block_iter *= bdimx;
  }

  // Decision to do a cross-warp reduction per block
  if (red_elems_per_thread >= (bdimy * kMinValuesPerThread) ||
      red_elems_per_thread >= kMaxValuesPerThread || !rparams.fastest_dim) {
    inputs_consumed_per_block_iter *= bdimy;
    red_elems_per_thread = ceilDiv(red_elems_per_thread, bdimy);
    rparams.cross_block = true;
    rparams.mul_reds_per_blk = false;
    // Do multiple reductions per block
  } else {
    rparams.cross_block = false;
    rparams.mul_reds_per_blk = true;
    outputs_produced_per_block_iter *= bdimy;
  }

  // 5. Distributing work across blocks

  // WARNING: Current device for codegen may not be the target device
  int device_max_threads_per_multiprocessor =
      at::cuda::getCurrentDeviceProperties()->maxThreadsPerMultiProcessor;
  int device_multiprocessor_count =
      at::cuda::getCurrentDeviceProperties()->multiProcessorCount;

  int blocks_per_sm = device_max_threads_per_multiprocessor / (bdimx * bdimy);
  int target_grid_size = device_multiprocessor_count * blocks_per_sm;

  // Setting the number of blocks based on the number of outputs
  gdimx = ceilDiv(red_outputs, outputs_produced_per_block_iter);

  // Cross-block reductions (if necessary)
  if (rparams.cross_block && red_elems_per_thread >= kMaxValuesPerThread &&
      gdimx <= target_grid_size) {
    int blks_per_out_1 = ceilDiv(target_grid_size, gdimx);
    int blks_per_out_2 = ceilDiv(red_elems_per_thread, kMinValuesPerThread);
    int blks_per_out_3 = ceilDiv(red_elems_per_thread, kMaxValuesPerThread);
    int blks_per_output =
        std::max(std::min(blks_per_out_1, blks_per_out_2), blks_per_out_3);

    gdimy = std::max(1, blks_per_output);
    // If a cross-block reduction was generated
    if (blks_per_output > 1) {
      rparams.cross_grid = true;
    }
  }

  const char* debug_env = getenv("PYTORCH_CUDA_FUSER_RED_SCHED_DEBUG");
  if (debug_env && atoi(debug_env)) {
    std::cout << "\n===== Reduction Parameters ========" << std::endl
              << "Inputs:" << std::endl
              << "\tRed Elems: " << red_elems << " Red Outputs: " << red_outputs
              << " Red On Fastest Dim? " << red_on_fastest_dim << std::endl
              << "Reduction Characteristics:" << std::endl
              << "\tMultiple Reds Per Block? " << rparams.mul_reds_per_blk
              << " Cross Block? " << rparams.cross_block << " Cross Grid? "
              << rparams.cross_grid << std::endl
              << "Recommended Blocking:" << std::endl
              << "\tGridX: " << gdimx << " GridY: " << gdimy
              << " BlckX: " << bdimx << " BlckY: " << bdimy << std::endl
              << "====================================" << std::endl;
  }

  rparams.lparams = LaunchParams(
      LaunchParams::UNINITIALIZED_VAL,
      gdimy,
      LaunchParams::UNINITIALIZED_VAL,
      bdimx,
      bdimy,
      LaunchParams::UNINITIALIZED_VAL);
  return rparams;
}
} // anonymous namespace

TORCH_CUDA_API c10::optional<ReductionParams> getReductionHeuristics(
    Fusion* fusion,
    const at::ArrayRef<c10::IValue>& fusion_inputs,
    TensorView* red_tv) {
  FUSER_PERF_SCOPE("scheduleReduction");

  FusionGuard fg(fusion);

  if (!fusion->hasReduction()) {
    return c10::nullopt;
  }

  auto red_root_dom = red_tv->getRootDomain();
  const bool red_on_fastest_dim =
      red_root_dom[red_root_dom.size() - 1]->isReduction();

  TORCH_INTERNAL_ASSERT(
      red_tv != nullptr, "Reduction TensorView wasn't found.");

  if (!fusion->hasReduction()) {
    return c10::nullopt;
  }

  TORCH_INTERNAL_ASSERT(
      red_tv->hasReduction(), "TensorView doesn't have a reduction.");
  const auto red_expr = fusion->origin(red_tv);

  TORCH_INTERNAL_ASSERT(
      red_expr->getExprType() != c10::nullopt &&
          red_expr->getExprType().value() == ExprType::ReductionOp,
      "TensorView doesn't have a reduction.");

  StatefulExpressionEvaluator evaluator(
      executor_utils::statefulBindInputs(fusion_inputs, fusion));

  int64_t red_outputs = 1;
  int64_t red_elements = 1;

  for (auto id : red_tv->getRootDomain()) {
    auto inferred_val = evaluator.inferValue(id->rawExtent());
    TORCH_INTERNAL_ASSERT(
        inferred_val.has_value(), "Error inferring reduction size.");
    if (id->isReduction()) {
      red_elements *= inferred_val.value();
    } else {
      red_outputs *= inferred_val.value();
    }
  }

  return reductionHeuristic(red_elements, red_outputs, red_on_fastest_dim);
}

// fusion is the input IR that will be modified by this function
void scheduleReduction(
    Fusion* fusion,
    const ReductionParams& rparams,
    TensorView* red_tv,
    std::vector<TensorView*> outs_of_red) {
  FusionGuard fg(fusion);

  // We coalesc all reduction axes to the right;
  mergeReduction(red_tv);

  // Merge all iteration dimensions
  mergeNonReduction(red_tv);
  for (auto iter_tv : outs_of_red) {
    mergeNonReduction(iter_tv);
  }

  // Evaluate Dimensions of Reduction TensorView
  auto red_ids = red_tv->domain()->domain();

  TORCH_INTERNAL_ASSERT(
      red_ids.size() == 2, "We coalesced all dimensions into 2 previously.");

  constexpr int kLoopUnrollSplit = 4;

  // Scheduling the Reduction
  if (rparams.fastest_dim) {
    // Do multiple reductions per block
    if (rparams.mul_reds_per_blk) {
      // Reduction Splits
      //      [outputs, |rF-Leftover, X-Warp, rf-Unroll|]
      // Idx:     0     |   1(-1)      2(-2)     3(-1) |
      //                --------------------------------
      //                Reduction Dimensions
      red_tv->split(1, rparams.loop_unroll);
      red_tv->split(1, NamedScalar::getParallelDim(ParallelType::TIDx));

      // Output Splits
      //      [|Out-Leftover, Out-PerBlock|, <Reduction Dims>]
      // Idx:  |     0             1      |   2(-2) -- 3(-1)
      //       ----------------------------
      //       Output Dimensions
      red_tv->split(0, NamedScalar::getParallelDim(ParallelType::TIDy));
      for (auto iter_tv : outs_of_red) {
        iter_tv->split(0, NamedScalar::getParallelDim(ParallelType::TIDy));
      }

      auto red_tv_rf = red_tv->rFactor({-3, -1});

      // WARNING: computeAt will coalesce the rFactored dimensions
      // rFactored Reduction Tensor after computeAt():
      //      [<output dims>, | rF-Leftover, X-Warp, rF-Unroll|]
      // Idx:      0 -- 1     |    2(-3)      3(-2)     4(-1)  |
      //                      ---------------------------------
      //                      Reduction Dimensions
      red_tv_rf->computeAt(red_tv, -1);

      // After the Reduction Tensor has rFactoring applied
      // Reduction Output Tensor:
      //      [Out-Leftover, Out-PerBlock, X-Warp]
      // Idx:       0              1       2(-1)
      if (!outs_of_red.empty()) {
        red_tv->computeAt(outs_of_red[0], -1);
      }

      red_tv_rf->axis(-1)->parallelize(ParallelType::Unroll);

      red_tv->axis(0)->parallelize(ParallelType::BIDx);
      for (auto iter_tv : outs_of_red) {
        iter_tv->axis(0)->parallelize(ParallelType::BIDx);
      }
      red_tv->axis(1)->parallelize(ParallelType::TIDy);
      for (auto iter_tv : outs_of_red) {
        iter_tv->axis(1)->parallelize(ParallelType::TIDy);
      }
      red_tv->axis(-1)->parallelize(ParallelType::TIDx);

      // Bind Inputs to Reduction
      for (auto input : fusion->inputsOf(red_tv_rf)) {
        if (input->getValType().value() == ValType::TensorView) {
          input->as<TensorView>()->computeAt(red_tv_rf, -1);
        }
      }
      // Do a cross-warp reduction per block
    } else {
      if (rparams.cross_grid) {
        // Reduction Splits
        //      [outputs, |rF-Leftover, X-Grid, X-Block, X-Warp, rf-Unroll|]
        // Idx:     0     |   1(-5)      2(-4)    3(-3)   4(-2)     5(-1) |
        //                -------------------------------------------------
        //                Reduction Dimensions
        red_tv->split(1, rparams.loop_unroll);
        red_tv->split(1, NamedScalar::getParallelDim(ParallelType::TIDx));
        red_tv->split(1, NamedScalar::getParallelDim(ParallelType::TIDy));
        red_tv->split(1, NamedScalar::getParallelDim(ParallelType::BIDy));

        auto red_tv_rf = red_tv->rFactor(
            {-5, -1}); // NOLINT(cppcoreguidelines-avoid-magic-numbers)

        // WARNING: computeAt will coalesce the rFactored dimensions
        // rFactored Reduction Tensor after computeAt():
        //      [Outputs, |X-Grid, X-Block, X-Warp, rF-Leftover, rF-Unroll|]
        // Idx:     0     | 1(-5)    2(-4)   3(-3)      4(-2)      5(-1)  |
        //                -------------------------------------------------
        //                Reduction Dimensions
        red_tv_rf->computeAt(red_tv, -1);

        // After the Reduction Tensor has rFactoring applied
        // Reduction Output Tensor:
        //      [Outputs, X-Grid, X-Block, X-Warp]
        // Idx:     0      1(-3)   2(-2)    3(-1)

        if (!outs_of_red.empty()) {
          red_tv->computeAt(outs_of_red[0], -1);
        }

        red_tv_rf->axis(-1)->parallelize(ParallelType::Unroll);

        red_tv->axis(0)->parallelize(ParallelType::BIDx);
        for (auto iter_tv : outs_of_red) {
          iter_tv->axis(0)->parallelize(ParallelType::BIDx);
        }
        red_tv->axis(-1)->parallelize(ParallelType::TIDx);
        red_tv->axis(-2)->parallelize(ParallelType::TIDy);
        red_tv->axis(-3)->parallelize(ParallelType::BIDy);

        // Bind Inputs to Reduction
        for (auto input : fusion->inputsOf(red_tv_rf)) {
          if (input->getValType().value() == ValType::TensorView) {
            input->as<TensorView>()->computeAt(red_tv_rf, -1);
          }
        }
      } else {
        // Reduction Splits
        //      [outputs, |rF-Leftover, X-Block, X-Warp, rf-Unroll|]
        // Idx:     0     |   1(-4)       2(-3)   3(-2)     4(-1) |
        //                -----------------------------------------
        //                Reduction Dimensions
        red_tv->split(1, rparams.loop_unroll);
        red_tv->split(1, NamedScalar::getParallelDim(ParallelType::TIDx));
        red_tv->split(1, NamedScalar::getParallelDim(ParallelType::TIDy));

        auto red_tv_rf = red_tv->rFactor({-4, -1});

        // WARNING: computeAt will coalesce the rFactored dimensions
        // rFactored Reduction Tensor after computeAt():
        //      [Outputs, |X-Block, X-Warp, rF-Leftover, rF-Unroll|]
        // Idx:     0     | 1(-4)   2(-3)      3(-2)       4(-1)  |
        //                -----------------------------------------
        //                Reduction Dimensions
        red_tv_rf->computeAt(red_tv, -1);

        // After the Reduction Tensor has rFactoring applied
        // Reduction Output Tensor:
        //      [Outputs, X-Block, X-Warp]
        // Idx:     0      1(-2)    2(-1)

        if (!outs_of_red.empty()) {
          red_tv->computeAt(outs_of_red[0], -1);
        }

        red_tv_rf->axis(-1)->parallelize(ParallelType::Unroll);

        red_tv->axis(0)->parallelize(ParallelType::BIDx);
        for (auto iter_tv : outs_of_red) {
          iter_tv->axis(0)->parallelize(ParallelType::BIDx);
        }
        red_tv->axis(-1)->parallelize(ParallelType::TIDx);
        red_tv->axis(-2)->parallelize(ParallelType::TIDy);

        // Bind Inputs to Reduction
        for (auto input : fusion->inputsOf(red_tv_rf)) {
          if (input->getValType().value() == ValType::TensorView) {
            input->as<TensorView>()->computeAt(red_tv_rf, -1);
          }
        }
      }
    }
  } else {
    if (rparams.cross_block) {
      if (rparams.cross_grid) {
        // Reduction Splits
        //      [outputs, |rF-Leftover, rf-Unroll, X-Grid, X-Block|]
        // Idx:     0     |   1(-4)       2(-3)     3(-2)   4(-1) |
        //                -----------------------------------------
        //                Reduction Dimensions
        red_tv->split(1, NamedScalar::getParallelDim(ParallelType::TIDy));
        red_tv->split(1, NamedScalar::getParallelDim(ParallelType::BIDy));
        red_tv->split(1, kLoopUnrollSplit);

        // Reordering the Unroll dimension eases applying computeAt()
        // for preceeding operations and the rFactored Tensor.
        //                                 |--- Reordered ----|
        //                                 V                  V
        //      [outputs, |rF-Leftover, X-Block, X-Grid, rF-Unroll|]
        // Idx:     0     |   1(-4)      2(-3)   3(-2)     4(-1)  |
        //                -----------------------------------------
        //                Reduction Dimensions
        red_tv->reorder({{-1, -3}, {-3, -1}});

        // Output Splits
        //      [|Out-Leftover, Out-PerBlock|, <Reduction Dims>]
        // Idx:  |     0             1      |   2(-4) -- 5(-1)
        //       ----------------------------
        //       Output Dimensions
        red_tv->split(0, NamedScalar::getParallelDim(ParallelType::TIDx));
        for (auto iter_tv : outs_of_red) {
          iter_tv->split(0, NamedScalar::getParallelDim(ParallelType::TIDx));
        }

        auto red_tv_rf = red_tv->rFactor({-4, -1});

        // WARNING: computeAt will coalesce the rFactored dimensions
        // rFactored Reduction Tensor after computeAt():
        //      [<output dims>, |X-Block, X-Grid, rF-Leftover, rF-Unroll|]
        // Idx:      0 -- 1     | 2(-4)   3(-3)      4(-2)       5(-1)  |
        //                      -----------------------------------------
        //                      Reduction Dimensions
        red_tv_rf->computeAt(red_tv, -1);

        // After the Reduction Tensor has rFactoring applied
        // Reduction Output Tensor:
        //      [Out-Leftover, Out-PerBlock, X-Block, X-Grid]
        // Idx:       0              1        2(-2)   3(-1)

        if (!outs_of_red.empty()) {
          red_tv->computeAt(outs_of_red[0], -1);
        }

        red_tv_rf->axis(-1)->parallelize(ParallelType::Unroll);

        red_tv->axis(0)->parallelize(ParallelType::BIDx);
        for (auto iter_tv : outs_of_red) {
          iter_tv->axis(0)->parallelize(ParallelType::BIDx);
          iter_tv->axis(1)->parallelize(ParallelType::TIDx);
        }

        red_tv->axis(-3)->parallelize(ParallelType::TIDx);
        red_tv->axis(-2)->parallelize(ParallelType::TIDy);
        red_tv->axis(-1)->parallelize(ParallelType::BIDy);

        // Bind Inputs to Reduction
        for (auto input : fusion->inputsOf(red_tv_rf)) {
          if (input->getValType().value() == ValType::TensorView) {
            input->as<TensorView>()->computeAt(red_tv_rf, -1);
          }
        }
      } else {
        // Reduction Splits
        //      [outputs, |rF-Leftover, rf-Unroll, X-Block|]
        // Idx:     0     |   1(-3)       2(-2)     3(-1) |
        //                ---------------------------------
        //                Reduction Dimensions
        red_tv->split(1, NamedScalar::getParallelDim(ParallelType::TIDy));
        red_tv->split(1, kLoopUnrollSplit);

        // Reordering the Unroll dimension eases applying computeAt()
        // for preceeding operations and the rFactored Tensor.
        //                               |- Reordered -|
        //                               V             V
        //      [outputs, |rF-Leftover, X-Block, rF-Unroll|]
        // Idx:     0     |   1(-3)      2(-2)     3(-1)  |
        //                ---------------------------------
        //                Reduction Dimensions
        red_tv->reorder({{-1, -2}, {-2, -1}});

        // Output Splits
        //      [|Out-Leftover, Out-PerBlock|, <Reduction Dims>]
        // Idx:  |     0             1      |   2(-3) -- 4(-1)
        //       ----------------------------
        //       Output Dimensions
        red_tv->split(0, NamedScalar::getParallelDim(ParallelType::TIDx));
        for (auto iter_tv : outs_of_red) {
          iter_tv->split(0, NamedScalar::getParallelDim(ParallelType::TIDx));
        }

        auto red_tv_rf = red_tv->rFactor({-3, -1});

        // WARNING: computeAt will coalesce the rFactored dimensions
        // rFactored Reduction Tensor after computeAt():
        //      [<output dims>, |X-Block, rF-Leftover, rF-Unroll|]
        // Idx:      0 -- 1     | 2(-3)      3(-2)       4(-1)  |
        //                      ---------------------------------
        //                      Reduction Dimensions
        red_tv_rf->computeAt(red_tv, -1);

        // After the Reduction Tensor has rFactoring applied
        // Reduction Output Tensor:
        //      [Out-Leftover, Out-PerBlock, X-Block]
        // Idx:       0              1        2(-1)

        if (!outs_of_red.empty()) {
          red_tv->computeAt(outs_of_red[0], -1);
        }

        red_tv_rf->axis(-1)->parallelize(ParallelType::Unroll);

        red_tv->axis(0)->parallelize(ParallelType::BIDx);
        for (auto iter_tv : outs_of_red) {
          iter_tv->axis(0)->parallelize(ParallelType::BIDx);
          iter_tv->axis(1)->parallelize(ParallelType::TIDx);
        }
        red_tv->axis(-2)->parallelize(ParallelType::TIDx);
        red_tv->axis(-1)->parallelize(ParallelType::TIDy);

        // Bind Inputs to Reduction
        for (auto input : fusion->inputsOf(red_tv_rf)) {
          if (input->getValType().value() == ValType::TensorView) {
            input->as<TensorView>()->computeAt(red_tv_rf, -1);
          }
        }
      }
    } else {
      red_tv->split(0, NamedScalar::getParallelDim(ParallelType::TIDx));
      for (auto iter_tv : outs_of_red) {
        iter_tv->split(0, NamedScalar::getParallelDim(ParallelType::TIDx));
      }

      if (!outs_of_red.empty()) {
        red_tv->computeAt(outs_of_red[0], -1);
      }

      red_tv->axis(0)->parallelize(ParallelType::BIDx);
      red_tv->axis(1)->parallelize(ParallelType::TIDx);
      for (auto iter_tv : outs_of_red) {
        iter_tv->axis(0)->parallelize(ParallelType::BIDx);
        iter_tv->axis(1)->parallelize(ParallelType::TIDx);
      }

      for (auto input : fusion->inputsOf(red_tv)) {
        if (input->getValType().value() == ValType::TensorView) {
          input->as<TensorView>()->computeAt(red_tv, -1);
        }
      }
    }
  }
}

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch