File: shape_inference.cpp

package info (click to toggle)
pytorch 1.7.1-7
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 80,340 kB
  • sloc: cpp: 670,830; python: 343,991; ansic: 67,845; asm: 5,503; sh: 2,924; java: 2,888; xml: 266; makefile: 244; ruby: 148; yacc: 144; objc: 51; lex: 44
file content (253 lines) | stat: -rw-r--r-- 8,348 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#include <torch/csrc/jit/codegen/cuda/shape_inference.h>
#include <c10/core/ScalarType.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/ir/constants.h>
#include <torch/csrc/jit/runtime/operator.h>

#include <ATen/ExpandUtils.h>
#include <ATen/core/jit_type.h>

namespace torch {
namespace jit {
namespace fuser {
namespace cuda {

namespace {

bool hasTypeDeviceAndDim(const TensorTypePtr& op) {
  return op->sizes().size().has_value() && op->scalarType().has_value() &&
      op->device().has_value();
}

/* NaiveTypePropagator
 *   Populate type/device tag on tensor, this is a transition module to
 *   cover the absence of type inference in codegen cuda fuser.
 *
 * We only cover operations supported in codegen. We focus on propagate concrete
 * types.
 * It does NOT handle aliases (not supported in codegen anyway); Type promotion
 * is not guaranteed to be consistent with PyTorch (we need to serve the need of
 * codegen instead).
 */
class NaiveTypePropagator {
 public:
  NaiveTypePropagator(std::shared_ptr<Graph> graph)
      : graph_(std::move(graph)) {}

  void PropagateOnBlock(Block* block) {
    for (Node* node : block->nodes()) {
      PropagateOnNode(node);
    }
  }

  void PropagateOnNode(Node* node) {
    switch (node->kind()) {
      // Constant:
      case prim::Constant: {
        if (node->output()->type()->isSubtypeOf(TensorType::get())) {
          node->output()->inferTypeFrom(node->t(attr::value));
        }
        break;
      }
      // unary operations that forward meta info:
      case aten::neg:
      case aten::abs:
      case aten::log:
      case aten::log10:
      case aten::log1p:
      case aten::log2:
      case aten::lgamma:
      case aten::exp:
      case aten::expm1:
      case aten::erf:
      case aten::erfc:
      case aten::cos:
      case aten::acos:
      case aten::cosh:
      case aten::sin:
      case aten::asin:
      case aten::sinh:
      case aten::tan:
      case aten::atan:
      case aten::sqrt:
      case aten::rsqrt:
      case aten::ceil:
      case aten::floor:
      case aten::round:
      case aten::trunc:
      case aten::frac:
      case aten::reciprocal:
      case aten::relu:
      case aten::sigmoid:
      case aten::threshold:
      case aten::clamp:
      case aten::gelu:
      case aten::tanh: {
        TORCH_CHECK(
            hasTypeDeviceAndDim(node->input(0)->type()->cast<TensorType>()),
            "Type, device, and dimensionality propagation has failed, or was not provided enough information.");
        node->output()->setType(node->input(0)->type()->cast<TensorType>());
        break;
      }
      // TODO: rand_like should support cast.
      case aten::rand_like: {
        TORCH_CHECK(
            hasTypeDeviceAndDim(node->input(0)->type()->cast<TensorType>()),
            "Type, device, and dimensionality propagation has failed, or was not provided enough information.");
        node->output()->setType(node->input(0)->type()->cast<TensorType>());
        break;
      }
      // binary operations that forward meta info and broadcast shape:
      case aten::mul:
      case aten::div:
      case aten::atan2:
      // TODO: double check type casting logic for min/max/pow
      case aten::min:
      case aten::max:
      case aten::pow:
      case aten::remainder:
      case aten::fmod:
      case aten::lerp:
      // add/sub could be ternary op and the third argument does not contribute
      // to neither type promoteion nor shape.
      case aten::add:
      case aten::sub: {
        const auto promoted_type = binary_broadcast_type(
            node->input(0)->type()->cast<TensorType>(),
            node->input(1)->type()->cast<TensorType>());
        node->output()->setType(promoted_type);
        break;
      }
      // TODO: double check type casting logic for operations commented out.
      case aten::lt:
      case aten::le:
      case aten::gt:
      case aten::ge:
      case aten::ne:
      case aten::eq: {
        const auto promoted_type = binary_broadcast_type(
            node->input(0)->type()->cast<TensorType>(),
            node->input(1)->type()->cast<TensorType>(),
            at::ScalarType::Bool);
        node->output()->setType(promoted_type);
        break;
      }
      case aten::where: {
        const auto promoted_type = binary_broadcast_type(
            node->input(1)->type()->cast<TensorType>(),
            node->input(2)->type()->cast<TensorType>());
        node->output()->setType(promoted_type);
        break;
      }
      case aten::addcmul: {
        auto promoted_type = binary_broadcast_type(
            node->input(1)->type()->cast<TensorType>(),
            node->input(2)->type()->cast<TensorType>());
        promoted_type = binary_broadcast_type(
            promoted_type, node->input(0)->type()->cast<TensorType>());
        node->output()->setType(promoted_type);
        break;
      }
      case aten::sum: {
        auto out_type = node->input(0)->type()->cast<TensorType>();

        // accept dtype input to `aten::sum` node
        if (!node->input(3)->type()->isSubtypeOf(
                static_cast<c10::TypePtr>(NoneType::get()))) {
          if (auto opt_ivalue = toIValue(node->input(3))) {
            out_type = out_type->withScalarType(opt_ivalue->toScalarType());
          }
        }
        const auto dims = constant_as<c10::List<int64_t>>(node->input(1));
        const auto keepdim = constant_as<bool>(node->input(2));
        TORCH_CHECK(
            dims.has_value() && keepdim.has_value() && !keepdim.value(),
            "Shape inference cannot handle options.");
        node->output()->setType(
            unary_reduce_type(out_type, dims->vec(), keepdim.value()));
        break;
      }
      default:
        TORCH_CHECK(
            false,
            "type inference failed, unrecognized operation encountered.");
        // TODO: generate a proper error log, as this probably means something
        //       went unexpected.
        break;
    }
  }

  void run() {
    PropagateOnBlock(graph_->block());
  }

 protected:
  TensorTypePtr unary_reduce_type(
      const TensorTypePtr& op,
      const std::vector<int64_t>& dims,
      bool keepdim) {
    TORCH_CHECK(hasTypeDeviceAndDim(op), "requires complete shape on input");
    auto input_size = op->sizes();
    int64_t ndims = keepdim ? input_size.size().value() : 0;
    if (!keepdim) {
      for (size_t i = 0; i < input_size.size(); i++) {
        if (std::find(dims.begin(), dims.end(), i) == dims.end()) {
          ndims++;
        }
      }
    }
    return TensorType::create(
        *op->scalarType(), *op->device(), ndims, c10::nullopt);
  }

  // TODO: we should comply to codegen type promotion.
  TensorTypePtr binary_broadcast_type(
      TensorTypePtr const& op0,
      TensorTypePtr const& op1,
      c10::optional<at::ScalarType> scalar_type = c10::nullopt) {
    TORCH_CHECK(
        op0 != nullptr || op1 != nullptr,
        "Scalar operations on binary broadcast type, not supported yet.");

    if (op0 != nullptr && op1 != nullptr) {
      TORCH_CHECK(
          op0->sizes().size().has_value() && op1->sizes().size().has_value(),
          "Cannot process input tensor without concrete number of dimensions.");
      int64_t ndims = *op0->sizes().size() > *op1->sizes().size()
          ? *op0->sizes().size()
          : *op1->sizes().size();

      auto promoted_scalar_type = scalar_type.has_value()
          ? *scalar_type
          : c10::promoteTypes(*op0->scalarType(), *op1->scalarType());

      return TensorType::create(
          promoted_scalar_type, *op0->device(), ndims, c10::nullopt);
    } else {
      auto ptr = (op0 != nullptr) ? op0 : op1;
      TORCH_CHECK(
          hasTypeDeviceAndDim(ptr),
          "Type, device, and dimensionality propagation has failed, or was not provided enough information.");
      return TensorType::create(
          scalar_type.has_value() ? *scalar_type : *ptr->scalarType(),
          *ptr->device(),
          *ptr->sizes().size(),
          c10::nullopt);
    }
  }

 private:
  std::shared_ptr<Graph> graph_;
};

} // namespace

void TypePropagate(std::shared_ptr<Graph>& graph) {
  FUSER_PERF_SCOPE("TypePropagate");
  NaiveTypePropagator(graph).run();
}

} // namespace cuda
} // namespace fuser
} // namespace jit
} // namespace torch