1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
|
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/compute_at.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_cloner.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
// #include <torch/csrc/jit/codegen/cuda/iter_visitor.h>
#include <torch/csrc/jit/codegen/cuda/ir_interface_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
// Cleanup
// #include <torch/csrc/jit/codegen/cuda/mutator.h>
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>
#include <torch/csrc/jit/codegen/cuda/transform_replay.h>
namespace torch {
namespace jit {
namespace fuser {
namespace {
DataType aten_opt_type_map(const c10::optional<at::ScalarType>& scalar_type) {
return scalar_type.has_value() ? aten_to_data_type(scalar_type.value())
: DataType::Null;
}
} // namespace
TensorView::TensorView(TensorDomain* _domain, DataType dtype, MemoryType mtype)
: Val(ValType::TensorView, dtype), domain_(_domain), memory_type_(mtype) {}
TensorView::TensorView(const std::shared_ptr<c10::TensorType>& tensor_type)
: Val(ValType::TensorView,
aten_opt_type_map(tensor_type->scalarType()),
false) {
std::vector<IterDomain*> sizes;
TORCH_CHECK(
tensor_type->dim().has_value(), "Requires static rank for Tensor");
for (decltype(tensor_type->dim().value()) i = 0;
i < tensor_type->dim().value();
i++) {
if (tensor_type->sizes()[i].has_value() &&
tensor_type->sizes()[i].value() == 1) {
// If size is known to be 1, assuem it needs to be broadcasted.
sizes.push_back(new IterDomain(
new Int(0),
new Int(1),
ParallelType::Serial,
IterType::BroadcastWithStride));
} else {
sizes.push_back(new IterDomain(new Int(0), new Int()));
}
}
// default to non_contiguous;
std::vector<bool> contig_info(tensor_type->dim().value(), false);
// we iterate through stride_index_, which goes from fastest changing
// dimension to slowest, instead of iterating through sizes. This allows
// easier contiguity check;
for (size_t i = 0; i < tensor_type->dim().value(); i++) {
// if we don't have contiguous dimension at current stride index, don't
// bother;
const auto& stride_property_i = tensor_type->stride_properties()[i];
if (stride_property_i.has_value() &&
stride_property_i->stride_index_.has_value() &&
stride_property_i->contiguous_.has_value() &&
stride_property_i->contiguous_.value() == true) {
const size_t index = stride_property_i->stride_index_.value();
if (i == 0) {
// mark fastest changing dimension collapsible only when it's the last
// dim;
contig_info[index] = (index == tensor_type->dim().value() - 1);
} else {
// check the neighboring faster dimension;
if (auto left_index_opt =
tensor_type->stride_properties()[static_cast<int>(i) - 1]
->stride_index_) {
// collapse if two axes are neighboring in both sizes & stride_index;
contig_info[index] = (left_index_opt.value() == (index + 1));
}
}
}
}
domain_ = new TensorDomain(sizes, contig_info);
name_ = fusion_->registerVal(this);
}
TensorView::TensorView(const TensorView* src, IrCloner* ir_cloner)
: Val(src, ir_cloner),
domain_(ir_cloner->clone(src->domain_)),
compute_at_view_(ir_cloner->clone(src->compute_at_view_)),
relative_compute_at_axis_(src->relative_compute_at_axis_),
this_compute_at_axis_(src->this_compute_at_axis_),
memory_type_(src->memory_type_) {}
bool TensorView::hasReduction() const {
return domain()->hasReduction();
}
bool TensorView::hasBlockReduction() const {
return domain()->hasBlockReduction();
}
bool TensorView::hasGridReduction() const {
return domain()->hasGridReduction();
}
bool TensorView::hasBlockBroadcast() const {
return domain()->hasBlockBroadcast();
}
bool TensorView::hasBroadcast() const {
return domain()->hasBroadcast();
}
bool TensorView::hasRFactor() const {
return domain()->hasRFactor();
}
c10::optional<unsigned int> TensorView::getReductionAxis() const {
return domain()->getReductionAxis();
}
const std::vector<IterDomain*>& TensorView::getRootDomain() const {
return domain()->getRootDomain();
};
const std::vector<IterDomain*>& TensorView::getRFactorDomain() const {
return domain()->getRFactorDomain();
};
const std::vector<IterDomain*>& TensorView::getMaybeRFactorDomain() const {
return domain()->getMaybeRFactorDomain();
};
std::vector<IterDomain*>::size_type TensorView::nDims() const {
return domain()->nDims();
}
IterDomain* TensorView::axis(int pos) const {
TORCH_INTERNAL_ASSERT(
nDims() > 0, "Tried to access an axis in a 0-dim TensorView");
if (pos < 0)
pos += domain()->nDims();
TORCH_CHECK(
pos >= 0 && (unsigned int)pos < domain()->nDims(),
"Tried to access position ",
pos,
" in domain: ",
domain());
return domain()->axis(pos);
}
TensorView* TensorView::unsafeClone() const {
TensorView* new_view = new TensorView(domain_, getDataType().value());
new_view->compute_at_view_ = compute_at_view_;
new_view->relative_compute_at_axis_ = relative_compute_at_axis_;
new_view->this_compute_at_axis_ = this_compute_at_axis_;
new_view->memory_type_ = memory_type_;
new_view->name_ = name();
return new_view;
}
void TensorView::setComputeAt(TensorView* computeAtView, int axis) {
compute_at_view_ = computeAtView;
relative_compute_at_axis_ = axis;
setThisComputeAtAxis();
TORCH_INTERNAL_ASSERT(
getThisComputeAtAxis() >= 0 &&
(unsigned int)getThisComputeAtAxis() <= nDims(),
"Invalid computeAt on ",
this,
" tried to set to local axis ",
getThisComputeAtAxis());
TORCH_INTERNAL_ASSERT(
std::none_of(
domain()->domain().begin(),
domain()->domain().begin() + getThisComputeAtAxis(),
[](IterDomain* id) { return id->isReduction(); }),
"Invalid computeAt, reduction domain inside computeAt axis.");
}
void TensorView::setComputeAt(
TensorView* computeAtView,
int thisPos,
int relPos) {
compute_at_view_ = computeAtView;
relative_compute_at_axis_ = relPos;
this_compute_at_axis_ = thisPos;
TORCH_INTERNAL_ASSERT(
this_compute_at_axis_ <= nDims(), "Manually set an invalid computeAt.");
}
// Where in compute_at_view does this->axis(pos) match up?
// TODO: This doesn't seem like the safest function as a fusion output can ref
// another fusion output, we may want to check that there is a direct
// consumer/producer relationship between this and compute_at view before using
// this function, and creating another pass to handle relative outputs.
int TensorView::getComputeAtRelPos(int pos) {
if (!hasComputeAt()) {
return pos;
}
if (!compute_at_view_->hasBroadcast()) {
return pos;
}
size_t pos_cav = 0, pos_this = 0;
// We could be in an instance where pos == 0, but consumer[0] is bcast and
// this[0] is not
while (compute_at_view_->axis(pos_cav)->isBroadcast() &&
!(axis(pos_this)->isBroadcast())) {
pos_cav++;
}
while ((int)pos_this < pos) {
TORCH_INTERNAL_ASSERT(
pos_cav < compute_at_view_->nDims(),
"Error computing relative position in computeAt.");
if (compute_at_view_->axis(pos_cav)->isBroadcast() &&
!(axis(pos_this)->isBroadcast())) {
pos_cav++;
} else {
pos_cav++;
pos_this++;
}
}
return pos_cav;
}
void TensorView::setThisComputeAtAxis() {
if (compute_at_view_ == nullptr) {
relative_compute_at_axis_ = 0;
this_compute_at_axis_ = 0;
return;
}
// this[is{i1}, is{i2},] -> compute at compute_at_view[bS{i0}, iS{i1}, iS{i2}]
// axis = 2 this compute at axis = 1
// pos in compute at view
size_t pos_cav = 0, pos_this = 0;
while (pos_cav < relative_compute_at_axis_ && pos_this < nDims()) {
if (compute_at_view_->axis(pos_cav)->isBroadcast() &&
!(axis(pos_this)->isBroadcast())) {
pos_cav++;
} else {
pos_cav++;
pos_this++;
}
}
TORCH_INTERNAL_ASSERT(
pos_cav == relative_compute_at_axis_ ||
(pos_cav < compute_at_view_->nDims() &&
compute_at_view_->axis(pos_cav)->isBroadcast()),
"Error seting up relative position between this and what we view into.");
this_compute_at_axis_ = pos_this;
}
TensorView* TensorView::computeAt(TensorView* consumer, int axis) {
// Make sure this and consumer are not the same tensor, that's illegal
TORCH_CHECK(!sameAs(consumer), "Cannot call this->computeAt(this, ...)");
// We support negative axes, so increment it by consumer->nDims() + 1 and make
// sure the result is within consumer->nDims() + 1. being at consumer->nDims()
// means producer will be computed inline with consumer, hence the +1.
if (axis < 0)
axis += int(consumer->nDims()) + 1;
TORCH_CHECK(
axis >= 0 && (unsigned int)axis < consumer->nDims() + 1,
"Compute at called on an axis outside valid range.");
ComputeAt::run(this, consumer, (unsigned int)axis);
return this;
}
TensorView* TensorView::split(int axis, Val* factor) {
// Only check things associated with axis, factor will be validated in
// IterDomain
TORCH_INTERNAL_ASSERT(nDims() > 0, "Tried to do split on a 0-dim TensorView");
if (axis < 0)
axis += domain()->nDims();
if (getComputeAtView() != nullptr)
if (axis < (int)getThisComputeAtAxis())
TORCH_CHECK(
false,
"Cannot split axis within compute at range. Axis = ",
axis,
" thisComputeAtAxis = ",
getThisComputeAtAxis());
domain()->split(axis, factor);
return this;
}
TensorView* TensorView::split(int axis, unsigned int factor) {
domain()->split(axis, new Int(factor));
return this;
}
// Merge "axis" and "axis+1" into 1 dimension
TensorView* TensorView::merge(int axis_o, int axis_i) {
TORCH_INTERNAL_ASSERT(nDims() > 0, "Tried to do merge on a 0-dim TensorView");
if (axis_o < 0)
axis_o += domain()->nDims();
if (axis_i < 0)
axis_i += domain()->nDims();
if (getComputeAtView() != nullptr)
if (axis_o + 1 < (int)getThisComputeAtAxis() ||
axis_i + 1 < (int)getThisComputeAtAxis())
TORCH_CHECK(
false,
"Cannot merge axis within compute at range. Either axis ",
axis_o,
" or ",
axis_i,
" are within thisComputeAtAxis = ",
getThisComputeAtAxis());
domain()->merge(axis_o, axis_i);
return this;
}
TensorView* TensorView::reorder(const std::unordered_map<int, int>& old2new_) {
TORCH_INTERNAL_ASSERT(
!(nDims() == 0 && old2new_.size() > 0),
"Tried to reorder a 0-dim TensorView");
domain()->reorder(old2new_);
return this;
}
TensorView* TensorView::rFactor(const std::vector<int>& axes) {
TORCH_INTERNAL_ASSERT(nDims() > 0, "Tried to rFactor a 0-dim TensorView");
FusionGuard fg(fusion());
Expr* origin_expr = fusion()->origin(this);
TORCH_CHECK(
origin_expr != nullptr &&
origin_expr->getExprType() == ExprType::ReductionOp,
"Error rfactoring ",
this,
" its origin is either a nullptr or not a reduction.");
TORCH_CHECK(
!domain()->hasRFactor(), "Cannot call rfactor on the same view twice.");
ReductionOp* this_origin = origin_expr->as<ReductionOp>();
// Split tensor view into 2 parts
auto domain_pair = domain()->rFactor(axes);
// Producer in the pair
auto producer_domain = domain_pair.first;
// Consumer in the pair
auto consumer_domain = domain_pair.second;
// This domain will be the consumer, so create the producer
TensorView* producer = new TensorView(producer_domain, getDataType().value());
// Set domain of consumer
setDomain(consumer_domain);
TensorView* consumer = this;
// Setup dependency chain, inserting producer before this op.
// Expr* producer_origin =
new ReductionOp(
this_origin->getReductionOpType(),
this_origin->init(),
producer,
this_origin->in());
// Expr* consumer_origin =
new ReductionOp(
this_origin->getReductionOpType(),
this_origin->init(),
consumer,
producer);
return producer;
}
TensorView* TensorView::cache_before() {
FusionGuard fg(fusion());
Expr* origin_expr = fusion()->origin(this);
TORCH_CHECK(
origin_expr != nullptr && !fusion()->hasInput(this),
"Error adding cache_before ",
this,
" its origin is a nullptr and we restrict using cache_before on an input.");
TORCH_CHECK(
fusion()->hasOutput(this) ||
origin_expr->getExprType() != ExprType::ReductionOp,
"Error adding cache_before ",
this,
" its origin is a reduction and it is not an output, instead please use cache_after.");
// Create Producer Domain
// This domain will be the consumer, so create the producer
auto root_domain = getRootDomain();
TensorView* producer = new TensorView(
new TensorDomain(
root_domain, std::vector<bool>(root_domain.size(), true)),
getDataType().value());
// Set domain of consumer
TensorView* consumer = this;
// this TV is an output and its origin is a reduction
// remove reduction axis from this tv
if (origin_expr->getExprType() == ExprType::ReductionOp) {
size_t i = 0;
auto no_reduction_root_domain = TensorDomain::noReductions(getRootDomain());
std::vector<IterDomain*> new_root_domain(no_reduction_root_domain.size());
for (auto dom : no_reduction_root_domain) {
new_root_domain[i++] = dom->clone();
}
consumer->setDomain(new TensorDomain(
new_root_domain, std::vector<bool>(new_root_domain.size(), true)));
}
// Insert producer - Cache_Before (CB) - before this TV.
// Before: Prev TV -> [Origin Op] -> This TV
// After: Prev TV -> [Origin Op] -> New CB TV -> [Set Op] -> This TV
// Get inputs for origin expression
auto expr_inputs = origin_expr->inputs();
// Expr* producer_origin =
createExprConsumer(origin_expr, producer);
// Expr* producer_uses =
new UnaryOp(UnaryOpType::Set, consumer, producer);
// Before: This TV -> Next TV
// After: New TV (CB) -> This TV -> Next TV
if (hasComputeAt()) {
TransformReplay::replayPasC(producer, consumer, -1);
auto this_ca_pos = getThisComputeAtAxis();
producer->computeAt(consumer, this_ca_pos);
} else {
// Before: Prev TV -> This TV
// After: Prev TV -> New TV (CB) -> This TV
// Iterate over origin expression inputs for cache_before on outputs
for (TensorView* origin_input :
ir_utils::filterByType<TensorView>(expr_inputs)) {
if (origin_input->hasComputeAt() &&
origin_input->getComputeAtView() == this) {
TransformReplay::replayPasC(producer, consumer, -1);
auto origin_ca_pos = origin_input->getThisComputeAtAxis();
auto origin_rel_ca_pos = origin_input->getRelativeComputeAtAxis();
origin_input->computeAt(producer, origin_ca_pos);
producer->setComputeAt(consumer, origin_rel_ca_pos);
}
}
}
return producer;
}
TensorView* TensorView::cache_after() {
FusionGuard fg(fusion());
// Get all the uses for this Tensorview
TORCH_CHECK(
!fusion()->hasOutput(this),
"Error adding cache_after ",
this,
" we restrict using cache_after on an output.");
// Create Consumer Domain
// Keep Broadcast Axis (Permanent)
// Remove Reduction Axis
size_t i = 0;
auto no_reduction_root_domain = TensorDomain::noReductions(getRootDomain());
std::vector<IterDomain*> new_root_domain(no_reduction_root_domain.size());
for (auto dom : no_reduction_root_domain) {
new_root_domain[i++] = dom->clone();
}
// This domain will be the producer, so create the consumer
TensorView* consumer = new TensorView(
new TensorDomain(
new_root_domain, std::vector<bool>(new_root_domain.size(), true)),
getDataType().value());
// Set domain of producer - No Change
TensorView* producer = this;
// Insert consumer - Cache_After (CA) - after this TV.
// Before: This TV -> [Use Op] -> Next TV
// After: This TV -> [Set Op] -> New CA TV -> [Use Op] -> Next TV
// Expr* consumer_uses =
size_t count = 0;
for (auto expr : fusion()->unordered_uses(this)) {
createExprProducer(expr, this, consumer);
++count;
}
if (count > 1) {
std::cout
<< "WARNING: Cache_After with multiple consumers can create incorrect "
"kernels depending on computeAt configuration."
<< std::endl;
}
// Expr* consumer_origin =
new UnaryOp(UnaryOpType::Set, consumer, producer);
// Before: This TV -> Next TV
// After: This TV -> New TV (After) -> Next TV
if (hasComputeAt()) {
TransformReplay::replayCasP(consumer, producer, -1);
auto rel_ca_pos = getRelativeComputeAtAxis();
auto this_ca_pos = getThisComputeAtAxis();
auto this_ca_view = getComputeAtView();
computeAt(consumer, this_ca_pos);
consumer->setComputeAt(this_ca_view, rel_ca_pos);
} else {
// Check users of this TV for computeAt for cache_after on inputs
for (auto expr : fusion()->unordered_uses(consumer)) {
for (TensorView* output :
ir_utils::filterByType<TensorView>(expr->outputs())) {
if (output->hasComputeAt()) {
TransformReplay::replayPasC(consumer, output, -1);
auto output_ca_pos = output->getThisComputeAtAxis();
consumer->setComputeAt(output, output_ca_pos);
}
}
}
}
return consumer;
}
void TensorView::setMemoryType(MemoryType mt) {
memory_type_ = mt;
if (fusion()->hasInput(this) || fusion()->hasOutput(this)) {
TORCH_INTERNAL_ASSERT(
mt == MemoryType::Global,
"Tried to set an input or output to the fusion to a non-global memory type.");
}
}
namespace {
// Create New Expr given consumer - [output of the expression]
struct CreateExprConsumer : public OptInDispatch {
public:
static void create(Expr* expr, TensorView* consumer) {
CreateExprConsumer cec(consumer);
cec.handle(expr);
}
private:
explicit CreateExprConsumer(TensorView* consumer) : consumer_(consumer) {}
void handle(Expr* expr) final {
OptInDispatch::handle(expr);
}
void handle(UnaryOp* unary_expr) final {
new UnaryOp(unary_expr->getUnaryOpType(), consumer_, unary_expr->in());
}
void handle(BinaryOp* binary_expr) final {
new BinaryOp(
binary_expr->getBinaryOpType(),
consumer_,
binary_expr->lhs(),
binary_expr->rhs());
}
void handle(TernaryOp* ternary_expr) final {
new TernaryOp(
ternary_expr->getTernaryOpType(),
consumer_,
ternary_expr->in1(),
ternary_expr->in2(),
ternary_expr->in3());
}
void handle(ReductionOp* reduction_expr) final {
new ReductionOp(
reduction_expr->getReductionOpType(),
reduction_expr->init(),
consumer_,
reduction_expr->in());
}
void handle(BroadcastOp* broadcast_expr) final {
new BroadcastOp(consumer_, broadcast_expr->in());
}
private:
TensorView* consumer_ = nullptr;
};
// Create New Expr given producer - [an input for the expression]
struct CreateExprProducer : public OptInDispatch {
public:
static void create(Expr* expr, TensorView* current, TensorView* producer) {
CreateExprProducer cep(current, producer);
cep.handle(expr);
}
private:
explicit CreateExprProducer(TensorView* current, TensorView* producer)
: current_(current), producer_(producer) {}
void handle(Expr* expr) final {
OptInDispatch::handle(expr);
}
void handle(UnaryOp* unary_expr) final {
new UnaryOp(unary_expr->getUnaryOpType(), unary_expr->out(), producer_);
}
void handle(BinaryOp* binary_expr) final {
if (binary_expr->lhs()->sameAs(current_)) {
new BinaryOp(
binary_expr->getBinaryOpType(),
binary_expr->out(),
producer_,
binary_expr->rhs());
} else {
new BinaryOp(
binary_expr->getBinaryOpType(),
binary_expr->out(),
binary_expr->lhs(),
producer_);
}
}
void handle(TernaryOp* ternary_expr) final {
if (ternary_expr->in1()->sameAs(current_)) {
new TernaryOp(
ternary_expr->getTernaryOpType(),
ternary_expr->out(),
producer_,
ternary_expr->in2(),
ternary_expr->in3());
} else if (ternary_expr->in2()->sameAs(current_)) {
new TernaryOp(
ternary_expr->getTernaryOpType(),
ternary_expr->out(),
ternary_expr->in1(),
producer_,
ternary_expr->in3());
} else {
new TernaryOp(
ternary_expr->getTernaryOpType(),
ternary_expr->out(),
ternary_expr->in1(),
ternary_expr->in2(),
producer_);
}
}
void handle(ReductionOp* reduction_expr) final {
new ReductionOp(
reduction_expr->getReductionOpType(),
reduction_expr->init(),
reduction_expr->out(),
producer_);
}
void handle(BroadcastOp* broadcast_expr) final {
new BroadcastOp(broadcast_expr->out(), producer_);
}
private:
TensorView* current_ = nullptr;
TensorView* producer_ = nullptr;
};
} // namespace
// In Cache Before, for the origin expr of the original tensor,
// we create a new operation where the original tensor is replaced
// with the new cache tensor. This function creates a new expr
// given the consumer, the output of the expression.
void TensorView::createExprConsumer(Expr* expr, TensorView* consumer) {
CreateExprConsumer::create(expr, consumer);
}
// In Cache After, for all the uses of the original tensor, we create
// a new operation where the original tensor is replaced with the new
// cache tensor. This function creates a new expr given a producer,
// an input for the expression.
void TensorView::createExprProducer(
Expr* expr,
TensorView* current,
TensorView* producer) {
CreateExprProducer::create(expr, current, producer);
}
} // namespace fuser
} // namespace jit
} // namespace torch
|