1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
|
#include <torch/csrc/jit/codegen/cuda/transform_replay.h>
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/instrumentation.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_iostream.h>
#include <torch/csrc/jit/codegen/cuda/transform_iter.h>
#include <vector>
namespace torch {
namespace jit {
namespace fuser {
using id_map = std::unordered_map<IterDomain*, IterDomain*>;
namespace {
class ReplaySelf : public ReplayTransformations {
private:
// Took a good bit of this from ReplayTransformations::handle(Split...)
void handle(Split* s) override {
// Grab input to the split operation
auto id_in = s->in();
// Grab our mapping of that ID to the one we're replaying
auto it = id_map_.find(id_in);
// Make sure it exists in the map
TORCH_INTERNAL_ASSERT(
it != id_map_.end(),
"Transform traversal failed, dependencies not met.");
// Grab the ID we're going to replay on
auto mapped = it->second;
// This ID should be a leaf ID (meaning it has no uses we generated)
TORCH_INTERNAL_ASSERT(
leaf_ids_.find(mapped) != leaf_ids_.end(),
"Transform traversal failed, modified a node but it was not a leaf node.");
// outer loop size
Val* oe = ceilDiv(mapped->extent(), s->factor());
// Manually replay the split, following the output of the operations.
// This is so rfactor ops are replayed correctly.
IterDomain* ido = new IterDomain(
new Int(0),
oe->as<Int>(),
s->outer()->getParallelType(),
s->outer()->getIterType(),
s->outer()->isRFactorProduct());
// inner IterDomain
IterDomain* idi = new IterDomain(
new Int(0),
s->factor(),
s->inner()->getParallelType(),
s->outer()->getIterType(),
s->inner()->isRFactorProduct());
// Generate the split node
new Split(ido, idi, mapped, s->factor());
// Remove mapped id from leaf IDs
leaf_ids_.erase(mapped);
// Add outputs to leaf IDs
leaf_ids_[ido] = counter++;
leaf_ids_[idi] = counter++;
// Update our ID map to include these outputs
id_map_[s->outer()] = ido;
id_map_[s->inner()] = idi;
}
void handle(Merge* m) override {
auto id_outer = m->outer();
auto id_inner = m->inner();
auto it_outer = id_map_.find(id_outer);
auto it_inner = id_map_.find(id_inner);
TORCH_INTERNAL_ASSERT(
it_outer != id_map_.end() && it_inner != id_map_.end(),
"Transform traversal failed, dependencies not met.");
auto id_outer_mapped = it_outer->second;
auto id_inner_mapped = it_inner->second;
TORCH_INTERNAL_ASSERT(
leaf_ids_.find(id_outer_mapped) != leaf_ids_.end() &&
leaf_ids_.find(id_inner_mapped) != leaf_ids_.end(),
"Transform traversal failed, modified ",
id_outer_mapped,
" and ",
id_inner_mapped,
" however one or both are not leaf nodes.");
Val* merged_id_size =
mul(id_outer_mapped->extent(), id_inner_mapped->extent());
IterDomain* merged_id = new IterDomain(
new Int(0),
merged_id_size->as<Int>(),
m->out()->getParallelType(),
m->outer()->getIterType(),
m->out()->isRFactorProduct());
new Merge(merged_id, id_outer_mapped, id_inner_mapped);
// Remove inputs from the leaf IDs
leaf_ids_.erase(id_outer_mapped);
leaf_ids_.erase(id_inner_mapped);
// Add the output to the leaf IDs
leaf_ids_[merged_id] = counter++;
id_map_[m->out()] = merged_id;
}
public:
ReplaySelf(const std::vector<IterDomain*>& _target_domain, id_map _id_map)
: ReplayTransformations(_target_domain, std::move(_id_map), false) {}
};
} // namespace
// Self replay.
TensorDomain* TransformReplay::fullSelfReplay(
const TensorDomain* new_self_root,
const TensorDomain* self) {
FUSER_PERF_SCOPE("fullSelfReplay");
TORCH_INTERNAL_ASSERT(
new_self_root->nDims() == self->getRootDomain().size(),
"Invalid number of IterDomains provided.");
// Map for replay, should be pretty simple.
id_map axis_map;
{
size_t i = 0;
for (auto id : self->getRootDomain()) {
TORCH_INTERNAL_ASSERT(
new_self_root->axis(i)->start() == id->start(),
"Replay does not support IterDomains that do not start at 0.");
TORCH_INTERNAL_ASSERT(
new_self_root->axis(i)->getParallelType() == id->getParallelType() &&
new_self_root->axis(i)->isReduction() == id->isReduction() &&
new_self_root->axis(i)->isRFactorProduct() ==
id->isRFactorProduct() &&
new_self_root->axis(i)->isBroadcast() == id->isBroadcast(),
"Axes do not match for self replay.");
axis_map[id] = new_self_root->axis(i);
i++;
}
}
// Replay producer dimensions.
ReplaySelf replay(self->domain(), axis_map);
std::vector<IterDomain*> new_domain(self->nDims(), nullptr);
{
size_t i = 0;
for (auto id : self->domain()) {
auto it = replay.getReplay().find(id);
TORCH_INTERNAL_ASSERT(
it != replay.getReplay().end(),
"Error during replay, didn't replay an axis.");
new_domain[i++] = it->second;
}
}
return new TensorDomain(
new_self_root->domain(), new_domain, self->contiguity());
}
// Producer could have rfactor axes which consumer may want replayed. We can
// "replay" them as long as it doesn't modify the root rfactor axes. What we
// really want to do is validate if we replayed these axes to the ones they
// mapped to in the consumer the operations would all be the same. then we want
// to start the replay of the producer from the rfactor root axes, not the root.
std::pair<TensorDomain*, unsigned int> TransformReplay::replayPasC(
const TensorDomain* producer,
const TensorDomain* consumer,
int consumer_compute_at_axis) {
FUSER_PERF_SCOPE("replayPasC");
if (consumer_compute_at_axis < 0)
consumer_compute_at_axis += (int)consumer->nDims() + 1;
TORCH_INTERNAL_ASSERT(
consumer_compute_at_axis >= 0 &&
(unsigned int)consumer_compute_at_axis <= consumer->nDims(),
"Invalid axis in transform replayPasC.");
// consumer ids we need to match in producer
std::vector<IterDomain*> consumer_CA_ids(
consumer->domain().begin(),
consumer->domain().begin() + consumer_compute_at_axis);
// Figure out all inputs required to generate the compute_at dimensions
std::unordered_set<Val*> consumer_CA_root_vals = IterVisitor::getInputsTo(
std::vector<Val*>(consumer_CA_ids.begin(), consumer_CA_ids.end()));
std::unordered_set<IterDomain*> consumer_CA_root_ids;
for (auto val : consumer_CA_root_vals) {
if (val->getValType().value() == ValType::IterDomain) {
consumer_CA_root_ids.emplace(val->as<IterDomain>());
}
}
// Map of consumer_CA_root_ids to related producer_CA_ids
auto replay_root_map =
TensorDomain::mapRootCtoP(consumer, producer, consumer_CA_root_ids);
// Track which root axes in producer we will send to replay
std::unordered_set<IterDomain*> producer_roots4replay;
for (auto entry : replay_root_map) {
producer_roots4replay.emplace(entry.second);
}
// Instead of replaying from the root, lets try to play forward the history of
// producer if they match ops on consumer. Enforce if we modify an rfactor
// axis that those ops must match.
BestEffortReplay forward_replay(
producer->domain(), consumer_CA_ids, replay_root_map);
// Make a new map based on all the leaves resulting from best effort replay
id_map forwarded_replay_map;
for (auto entry : forward_replay.getReplay()) {
if (forward_replay.getUnorderedLeafIDs().find(entry.second) !=
forward_replay.getUnorderedLeafIDs().end())
forwarded_replay_map[entry.first] = entry.second;
}
// Replay producer dimensions.
ReplayTransformations replay_PasC(
consumer_CA_ids, forwarded_replay_map, false);
auto leaf_ids(replay_PasC.getUnorderedLeafIDs());
// Remove all ids that map to the compute at axis, we're going to replay the
// rest
for (auto c_id : consumer_CA_ids) {
auto it = replay_PasC.getReplay().find(c_id);
if (it == replay_PasC.getReplay().end()) {
TORCH_INTERNAL_ASSERT(
c_id->isBroadcast(),
"Could not find axis, ",
c_id,
", requested in replay.");
continue;
}
if (leaf_ids.find(it->second) != leaf_ids.end())
leaf_ids.erase(it->second);
}
// leaf_ids now contains all producer ID products that are not used to satisfy
// the computeAt Turn into a map so we can play forward these IDs in producer
// (if possible):
id_map producer_self_replay_map;
for (auto entry : leaf_ids)
producer_self_replay_map[entry.first] = entry.first;
auto producer_root = producer->getMaybeRFactorDomain();
// Any root domain that was not used to generate computeIDs we can also put in
// the map to forward their transformations.
for (auto producer_root_id : producer_root)
if (producer_roots4replay.find(producer_root_id) ==
producer_roots4replay.end()) {
producer_self_replay_map[producer_root_id] = producer_root_id;
}
// Play forward transformations all producer IDs we can
auto producer_replayed_leaves = BestEffortReplay(
producer->domain(), producer->domain(), producer_self_replay_map);
/*
* Accumulate axes in to the new domain in the following order, making sure to
* avoid any duplicates:
*
* (1) replay_PasC.getReplay holds mappings from axes in consumer compute at
* axes -> corresponding generated axes in producer
*
* (2) Any axes that were not added, that can be mapped directly from an ID in
* consumer->domain(). These are axes that were "fully replayed" relative to
* the consumer, even though it wasn't in the computeAt range.
*
* producer_replayed_leaves now contain ids that we tried to forward
* back to what they were in producer. If they couldn't be forwarded they're
* left in their "most forwarded" form which may be just a remainder of the
* transformation required to generate the computeAt axes.
*
* (3) Axes in producer->domain() that are in producer_replayed_leaves
*
* (4) Axes not in producer->domain() that are in producer_replayed_leaves
*
*/
std::vector<IterDomain*> new_IDs;
std::unordered_set<IterDomain*> used_IDs;
// Add axes in (1)
for (auto c_id : consumer_CA_ids) {
auto it = replay_PasC.getReplay().find(c_id);
if (it == replay_PasC.getReplay().end()) {
TORCH_INTERNAL_ASSERT(
c_id->isBroadcast(),
"Could not find axis, ",
c_id,
", requested in replay.");
continue;
}
new_IDs.push_back(it->second);
used_IDs.emplace(it->second);
}
unsigned int producer_compute_at_axis = new_IDs.size();
// Add axes in (2)
std::unordered_set<IterDomain*> consumer_CA_ids_set(
consumer_CA_ids.begin(), consumer_CA_ids.end());
for (auto c_id : consumer->domain()) {
auto it = replay_PasC.getReplay().find(c_id);
if (it != replay_PasC.getReplay().end()) {
auto id = it->second;
if (used_IDs.find(id) == used_IDs.end()) {
new_IDs.push_back(id);
used_IDs.emplace(id);
}
}
}
// Add axes in (3)
for (auto id : producer->domain()) {
if (producer_replayed_leaves.getUnorderedLeafIDs().find(id) !=
producer_replayed_leaves.getUnorderedLeafIDs().end()) {
if (used_IDs.find(id) == used_IDs.end()) {
new_IDs.push_back(id);
used_IDs.emplace(id);
}
}
}
// Add axes in (4)
for (auto id : producer_replayed_leaves.getLeafIDs())
if (used_IDs.find(id) == used_IDs.end())
new_IDs.push_back(id);
TensorDomain* replayed = new TensorDomain(
producer->getRootDomain(),
producer->getRFactorDomain(),
new_IDs,
producer->contiguity());
return {replayed, producer_compute_at_axis};
}
std::pair<TensorDomain*, unsigned int> TransformReplay::replayCasP(
const TensorDomain* consumer,
const TensorDomain* producer,
int producer_compute_at_axis) {
FUSER_PERF_SCOPE("replayCasP");
if (producer_compute_at_axis < 0)
producer_compute_at_axis += (int)producer->nDims() + 1;
TORCH_INTERNAL_ASSERT(
producer_compute_at_axis >= 0 &&
(unsigned int)producer_compute_at_axis <= producer->nDims(),
"Invalid axis in transform replayCasP.");
// producer ids we need to match in consumer
std::vector<IterDomain*> producer_CA_ids(
producer->domain().begin(),
producer->domain().begin() + producer_compute_at_axis);
producer_CA_ids = TensorDomain::noReductions(producer_CA_ids);
// Grab root domains of producer and consumer
std::vector<IterDomain*> consumer_root = consumer->getRootDomain();
// If producer has an rfactor root, that's what will match the consumer
std::vector<IterDomain*> producer_root = producer->getMaybeRFactorDomain();
// Figure out all inputs required to generate the compute_at dimensions. We
// need all deps because inputs on producer may be in getRootDomain, but we
// may need in rFactorDomain
std::unordered_set<Val*> all_CA_id_deps = DependencyCheck::getAllValsBetween(
{producer_root.begin(), producer_root.end()},
{producer_CA_ids.begin(), producer_CA_ids.end()});
// Figure out which root IDs we need:
std::unordered_set<IterDomain*> producer_CA_root_ids;
for (IterDomain* id : producer_root) {
if (all_CA_id_deps.find(id) != all_CA_id_deps.end())
producer_CA_root_ids.emplace(id);
}
auto replay_root_map =
TensorDomain::mapRootPtoC(producer, consumer, producer_CA_root_ids);
// Track which root axes in producer we will send to replay
std::unordered_set<IterDomain*> consumer_roots4replay;
for (auto entry : replay_root_map) {
consumer_roots4replay.emplace(entry.second);
}
// Instead of replaying from the root, lets try to forward the history of
// consumer if they match ops on producer. Enforce if we modify an rfactor
// axis that those ops match.
BestEffortReplay forward_replay(
consumer->domain(), producer_CA_ids, replay_root_map);
id_map forwarded_replay_map;
for (auto entry : forward_replay.getReplay()) {
if (forward_replay.getUnorderedLeafIDs().find(entry.second) !=
forward_replay.getUnorderedLeafIDs().end())
forwarded_replay_map[entry.first] = entry.second;
}
// Replay producer dimensions.
ReplayTransformations replay_CasP(
producer_CA_ids, forwarded_replay_map, false);
auto leaf_ids(replay_CasP.getUnorderedLeafIDs());
// Remove all ids that map to the compute at axis, we're going to replay the
// rest
for (auto p_id : producer_CA_ids) {
auto it = replay_CasP.getReplay().find(p_id);
TORCH_INTERNAL_ASSERT(
it != replay_CasP.getReplay().end(),
"Could not find axis, ",
p_id,
", requested in replay.");
if (leaf_ids.find(it->second) != leaf_ids.end())
leaf_ids.erase(it->second);
}
// leaf_ids now contains all consumer ID products that are not used to satisfy
// the computeAt Turn into a map so we can play forward these IDs in consumer
// (if possible):
id_map consumer_self_replay_map;
for (auto entry : leaf_ids)
consumer_self_replay_map[entry.first] = entry.first;
// Any root domain that was not used to generate computeIDs we can also put in
// the map to forward their transformations.
for (auto consumer_root_id : consumer_root)
if (consumer_roots4replay.find(consumer_root_id) ==
consumer_roots4replay.end())
consumer_self_replay_map[consumer_root_id] = consumer_root_id;
// Play forward transformations all consumer IDs we can
auto consumer_replayed_leaves = BestEffortReplay(
consumer->domain(), consumer->domain(), consumer_self_replay_map);
/*
* Accumulate axes in to the new domain in the following order, making sure to
* avoid any duplicates:
*
* (1) replay_PasC.getReplay holds mappings from axes in consumer compute at
* axes -> corresponding generated axes in producer
*
* (2) Any axes that were not added, that can be mapped directly from an ID in
* producer->domain(). These are axes that were "fully replayed" relative to
* the producer, even though it wasn't in the computeAt range.
*
* producer_replayed_leaves now contain ids that we tried to forward
* back to what they were in producer. If they couldn't be forwarded they're
* left in their "most forwarded" form which may be just a remainder of the
* transformation required to generate the computeAt axes.
*
* (3) Axes in producer->domain() that are in producer_replayed_leaves
*
* (4) Axes not in producer->domain() that are in producer_replayed_leaves
*
* TODO: Should (2) and (3) be swapped?
*/
std::vector<IterDomain*> new_IDs;
std::unordered_set<IterDomain*> used_IDs;
// Add axes in (1)
for (auto p_id : producer_CA_ids) {
auto it = replay_CasP.getReplay().find(p_id);
TORCH_INTERNAL_ASSERT(
it != replay_CasP.getReplay().end(),
"Could not find axis, ",
p_id,
", requested in replay.");
new_IDs.push_back(it->second);
used_IDs.emplace(it->second);
}
// Add axes in (2)
std::unordered_set<IterDomain*> consumer_CA_ids_set(
producer_CA_ids.begin(), producer_CA_ids.end());
for (auto p_id : producer->domain()) {
auto it = replay_CasP.getReplay().find(p_id);
if (it != replay_CasP.getReplay().end()) {
auto id = it->second;
if (used_IDs.find(id) == used_IDs.end()) {
new_IDs.push_back(id);
used_IDs.emplace(id);
}
}
}
// Add axes in (3)
for (auto id : consumer->domain()) {
if (consumer_replayed_leaves.getUnorderedLeafIDs().find(id) !=
consumer_replayed_leaves.getUnorderedLeafIDs().end()) {
if (used_IDs.find(id) == used_IDs.end()) {
new_IDs.push_back(id);
used_IDs.emplace(id);
}
}
}
// Add axes in (4)
for (auto id : consumer_replayed_leaves.getLeafIDs())
if (used_IDs.find(id) == used_IDs.end())
new_IDs.push_back(id);
TensorDomain* replayed = new TensorDomain(
consumer->getRootDomain(),
consumer->getRFactorDomain(),
new_IDs,
consumer->contiguity());
return {replayed, producer_CA_ids.size()};
}
// replay Producer as Consumer
std::pair<TensorView*, unsigned int> TransformReplay::replayPasC(
TensorView* producer,
TensorView* consumer,
int compute_at_axis) {
// If this is a reduction operation, we may call transform_replay on the
// tensor view. When this happens, just return thet target view.
if (producer == consumer)
return {producer, 0};
std::pair<TensorDomain*, unsigned int> replay =
replayPasC(producer->domain(), consumer->domain(), compute_at_axis);
producer->setDomain(replay.first);
return {producer, replay.second};
}
std::pair<TensorView*, unsigned int> TransformReplay::replayCasP(
TensorView* consumer,
TensorView* producer,
int compute_at_axis) {
// If this is a reduction operation, we may call transform_replay on the same
// tensor view. When this happens, just return thet target view.
if (consumer == producer)
return {consumer, 0};
std::pair<TensorDomain*, unsigned int> replay =
replayCasP(consumer->domain(), producer->domain(), compute_at_axis);
consumer->setDomain(replay.first);
return {consumer, replay.second};
}
} // namespace fuser
} // namespace jit
} // namespace torch
|